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Abstract—This paper presents mmProcess, a novel phase-
based approach for speech reconstruction using millimeter-
wave (mmWave) technology, offering an alternative to existing
Doppler-based and deep learning-dependent methods. By leverag-
ing the phase variations in mmWave signals, mmProcess enables
precise detection of fine vibrations caused by sound, facilitating
accurate speech reconstruction without the need for large train-
ing datasets, prior knowledge, or complex neural networks. This
eliminates the limitations of deep learning approaches, such as
degraded performance with unseen languages and the significant
time and cost required for system development.

mmProcess combines advanced signal processing techniques,
including range processing, phase unwrapping, and noise filter-
ing, to transform raw mmWave radar data into high-fidelity
speech signals. Experimental evaluations validate the effective-
ness of the method, demonstrating its capability to operate in
challenging scenarios while maintaining adaptability and cost
efficiency.

I. INTRODUCTION

The proliferation of millimeter-wave (mmWave) technology
has revolutionized wireless communication and sensing appli-
cations, offering high data rates, low latency, and improved
spatial resolution. Beyond its traditional use in radar systems
and high-frequency communication [1], mmWave signals have
shown significant potential for non-traditional applications,
such as gesture recognition [2], health monitoring [3], [4],
and even audio reconstruction [5].

In this paper, we introduce mmProcess, a novel phase-
based approach for speech reconstruction utilizing mmWave
technology, offering an alternative to existing mmWave-based
Doppler methodologies [6]. The proposed method enables the
detection of finer vibrations, facilitating accurate speech re-
construction without reliance on deep learning models or prior
knowledge. In contrast to existing Doppler-based techniques
which employ deep learning, our approach addresses critical
limitations, such as degraded performance when reconstructing
speech in languages that are not included in the training data,
and the substantial time and resource investment required for
system development. By eliminating the dependence on deep

Fig. 1. Overall diagram of mmProcess

learning, the proposed method provides a more adaptable,
cost-effective, and efficient solution for mmWave-based speech
reconstruction. The overall is in Fig. 1.

The key contributions of this paper are as follows:
• We propose a novel phase-based approach for speech

reconstruction using mmWave technology.
• The methodology does not require deep learning, making

it adaptable to new languages while reducing system
development costs.

• Experimental evaluations demonstrate the effectiveness of
our approach in detecting fine vibrations and reconstruct-
ing speech signals.

II. BACKGROUND

A. mmWave

mmWave, a subset of electromagnetic waves, operates
within the frequency range of approximately 30 GHz to 300
GHz, corresponding to wavelengths between 1 mm and 10
mm. The short wavelength of mmWave enables the utilization
of high-frequency signals, facilitating compact antenna designs
and highly precise signal processing. Moreover, its broad
frequency bandwidth supports exceptionally high data trans-
mission rates, making it particularly well-suited for advanced
wireless communication technologies such as 5G and Wi-Fi
6E.

Despite its advantages, mmWave signals exhibit significant
propagation challenges due to their high frequency. They are
characterized by strong linear propagation and are unable to
easily penetrate physical obstacles such as walls and trees,
leading to signal reflection and absorption. Additionally, sub-
stantial signal attenuation occurs in the air, resulting in a
limited transmission range. To overcome these limitations,
techniques such as beamforming and the use of repeaters are
commonly employed to enhance signal coverage and maintain
communication quality.
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These unique characteristics have positioned mmWave as a
pivotal technology across a range of applications. Its capacity
for ultra-fast data transmission and low-latency communica-
tion has made it a cornerstone in 5G networks and Wi-Fi 6E/7
systems. Furthermore, mmWave radar is highly reliable in
adverse weather conditions, enabling high-resolution obstacle
detection and distance measurement, which are critical for
autonomous driving technologies. Beyond communication and
sensing, mmWave has also been adopted for non-invasive
monitoring of physiological signals, including heart rate and
respiratory rate, further expanding its applicability in health-
care and monitoring systems.

B. Speech extraction

Chenhan Xu et al. introduced WaveEar technology, which
uses mmWave to detect skin vibrations near the vocal cords
and restore voice [5]. Chao Wang et al. proposed mm-
Phone, a technology that can eavesdrop on voice even in
soundproof environments by utilizing piezoelectric effects and
mmWave [7]. Wei-Han Chen et al. presented a technology that
reconstructs speech by detecting minute vibrations induced
on surrounding objects by sound using mmWave [8]. Chao
Wang et al. and Suryoday Basak et al. proposed mmEve
and mmSpy, respectively, which enable remote eavesdropping
on speech emitted from smartphone earpiece mode using
mmWave technology [9], [10]. Pengfei Hu et al. proposed
MILLIEAR, a system that uses mmWave technology to detect
minute vibrations of a speaker and reconstruct entire conversa-
tions [11]. Pengfei Hu et al. also introduced mmEcho, which
utilizes mmWave radar and signal processing to detect minute
vibrations of specific objects and reconstruct speech without
relying on machine learning or large datasets [6]. Unlike
their work, which performed peak detection on the results
of range FFT and further processed it with Doppler FFT,
this paper enhances performance by leveraging phase changes
instead. Yiwen Feng et al. introduced mmEavesdropper, which
amplifies mmWave signals using beamforming and Chirp-Z
transform to reconstruct speech [12].

III. METHODOLOGY

We propose a comprehensive methodology for reconstruct-
ing speech signals from mmWave radar data. The proposed
approach spans from raw data acquisition to the generation of
refined audio signals, leveraging phase information embedded
in mmWave signals to achieve speech reconstruction.

A. Data Acquisition

To reconstruct speech using mmWave technology, the ini-
tial step involves detecting vibrations induced by sound on
objects within the sensing range of the mmWave radar. This
process leverages mmWave Studio, a specialized software
tool provided by the radar manufacturer, to configure the
radar system and capture raw data [13]. The software is
operated on a Windows-based laptop, where all necessary
settings are applied, and the resulting data is stored for further

Fig. 2. Frequency spectrum obtained from range FFT

analysis. While this manual process is effective, it is both time-
intensive and operationally cumbersome, particularly when
frequent adjustments to the radar configuration are required.
To address these limitations, an automated workflow has
been implemented using Lua scripting, enabling efficient and
consistent configuration of the radar system. This approach
not only reduces the time and effort required for setup but
also minimizes potential human errors, ensuring reliability and
repeatability in data acquisition for mmWave-based speech
reconstruction.

During the data collection process, the distance between the
mmWave radar and the speaker was set to approximately 25
cm. The radar configuration included a total of 300 frames,
with each frame consisting of 128 ADC samples. The system
utilized all three transmit (TX) antennas and four receive (RX)
antennas to maximize data acquisition capability. Each frame
contained 384 chirps, calculated as the product of the three TX
antennas and 128 loops per frame. The raw data was stored in
binary format (.bin) for subsequent processing and analysis.

The mmWave radar system transmits signals from the TX
antennas, which are reflected by target objects and received by
the RX antennas. These reflections are converted into Analog-
to-Digital Converter (ADC) data, stored in binary format. Each
frame consists of multiple chirps recorded across multiple TX
and RX antennas.

The raw ADC data is processed using dedicated hardware
and software tools, such as DCA1000EVM, to organize it into
a structured data cube. The data cube represents dimensions of
frames, chirps, antennas, and ADC samples, enabling efficient
processing during subsequent stages. To address inconsisten-
cies in frame sizes, padding is applied to ensure uniformity.

B. Range Processing

The organized data cube undergoes range processing to
transform time-domain signals into range spectra. This is
achieved by applying a one-dimensional window function,
such as the Blackman window, to enhance resolution and sup-
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press noise. The transformation is mathematically expressed
as:

X(f) =

N−1∑
n=0

x(n) · w(n) · e−j2πfn, (1)

where x(n) is the time-domain signal, w(n) is the window
function, and N is the total number of samples.

The result of range processing is shown in Fig. 2. From
this result, peak detection is performed to identify peaks that
correspond to vibrations caused by speech. The identified
peaks are then used for subsequent phase analysis.

C. Phase Difference Extraction

The next step involves extracting phase differences between
consecutive frames. For each chirp and RX antenna, the
magnitude spectrum |X(f)| is computed, and a peak detection
algorithm identifies the most significant frequencies. The phase
information at these frequencies is given by:

ϕ(f) = arg(X(f)). (2)

The phase difference between the current and previous
frames is calculated as:

∆ϕ(f) = ϕcurr(f)− ϕprev(f). (3)

To handle discontinuities, phase unwrapping is applied,
expressed as:

∆ϕunwrapped(f) = ∆ϕ(f) + 2πk, k ∈ Z, |∆ϕ(f)| < π. (4)

Phase unwrapping is necessary to address the inherent
periodicity of phase values, which are typically constrained
within the range −π to π. Without unwrapping, these periodic
constraints can result in discontinuities or ”wrap-around” ef-
fects when the true phase difference exceeds this range. Phase
unwrapping corrects these discontinuities by ensuring the
phase values remain continuous over time, thereby restoring
the actual phase difference. This is particularly critical for
accurate speech signal reconstruction, as it allows for precise
tracking of temporal changes in the mmWave signals.

By resolving these discontinuities, phase unwrapping en-
sures that the extracted phase differences represent the true
temporal variations, enabling reliable and high-quality recon-
struction of the speech signal.

D. Audio Signal Construction

The unwrapped phase differences are aggregated across all
chirps and RX antennas to form a raw audio signal. This
signal is normalized to maintain consistent amplitude levels,
described as:

xnormalized(t) =
x(t)

max(|x(t)|)
. (5)

Normalization ensures that the signal is suitable for further
processing.

E. Signal Filtering

We applied multi-step filtering to enhance the quality of
the reconstructed audio signal. The approach includes three
filtering techniques: bandpass filtering to selectively allow
frequencies within the range of human speech (80–2000 Hz) to
pass while attenuating frequencies outside this range, Wiener
filtering to reduce noise using statistical properties of the
signal, and median filtering to smooth the signal irregularities
and eliminate high frequency spikes.

F. Audio Signal Output

The filtered signal is scaled to 16-bit integer values and
saved in WAV format. The scaling process is described as:

xscaled(t) = xnormalized(t) · 32767. (6)

Scaling is necessary to map the normalized signal, which
typically ranges from [−1, 1], to the 16-bit integer range
[−32768, 32767] used by the WAV file format. The value
32767 represents the maximum positive value in this range,
ensuring the signal fits within the standard 16-bit integer
representation while preserving its dynamic range.

G. Conclusion

Our methodology integrates mmWave technology with sig-
nal processing techniques to achieve reliable speech recon-
struction without relying on deep learning. By leveraging
phase information, this approach overcomes the limitations of
deep learning-dependent methods, such as the need for large
datasets, high computational cost, and poor generalization to
unseen languages. Instead, it provides a robust and efficient
framework for non-contact speech capture and reconstruction.

IV. EVALUATION

A. Experimental setup

The experimental setup was designed to capture, process,
and analyze mmWave radar data using a combination of
hardware and software components. For data acquisition, the
AWR1843BOOST, a single-chip automotive radar sensor eval-
uation module operating in the 76-GHz to 81-GHz frequency
range, was used as the primary sensor to capture high-
resolution radar signals. The DCA1000EVM, a data capture
and streaming evaluation module, was employed to enable
real-time access to the raw sensor data via an LVDS interface.
The ASUS ExpertBook, running on Windows OS with an
11th Gen Intel Core i5-1135G7 processor, 8 GB of RAM,
and Python 3.11.7, served as the data acquisition platform,
facilitating seamless collection and transfer of radar data from
the sensor.

Once the data was collected, processing and analysis were
conducted on a high-performance desktop system running
Ubuntu 22.04. The desktop, equipped with an 11th Gen Intel
Core i9-11900K processor, 64 GB of RAM, and Python
3.10.9, was used to execute the proposed methodology, in-
cluding range processing, phase extraction, and audio signal
reconstruction. For audio playback during data collection, the
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Fig. 3. Comparison of the original and the reconstructed audio

Creative PEBBLE PRO speaker was employed to provide
consistent, high-quality reference audio signals within the
radar’s sensing range.

B. Result

The reconstructed speech signal derived from the preceding
results is presented in Figure 3. This figure illustrates the
outcome of an experiment conducted at a distance of 25 cm.
The Mean Squared Error (MSE) between the original and
reconstructed speech signals was calculated to be 0.0197, indi-
cating a moderate level of similarity. To evaluate the robustness
of our approach, we conducted additional experiments by
playing the same audio at a consistent volume using a speaker
and placing the mmWave radar at increasing distances in
25 cm increments to collect data. The experimental results
showed that the reconstructed speech signal had an MSE of
less than 0.05 compared to the original speech signal at a
maximum distance of 1.5 m, which can be considered as
practically similar.

V. DISCUSSION

We propose mmProcess, a methodology for reconstructing
speech signals using mmWave radar technology without re-
lying on deep learning, and explore its potential applications
in eavesdropping. By detecting minute vibrations caused by
sound on objects, mmWave radar functions as a tool for
acquiring audio data in a non-contact manner, eliminating
the need for physical access. This approach addresses the
limitations of deep learning, such as the need for large
datasets, high computational costs, and reduced performance
when processing languages not included in training data. It
is particularly advantageous in scenarios where the target is
unaware of the sensing equipment or where direct access is
infeasible.

The proposed methodology successfully integrates signal
processing techniques, including range processing, phase un-
wrapping, and noise filtering, to reconstruct speech signals
without deep learning. Additionally, the automation of data
collection and radar configuration significantly improved re-
peatability and efficiency, reducing setup time while maintain-
ing consistent accuracy—key advantages for practical eaves-
dropping applications.

However, the accuracy of speech signal reconstruction heav-
ily depends on the characteristics of the vibrating object
and environmental factors, such as interference or multipath
reflections. Weak vibrations or environments with significant
interference may constrain the system’s performance, limiting
its applicability. Furthermore, the computational resources
required by the proposed pipeline may restrict its real-time
deployment on low-power edge devices.

Future research could focus on enhancing robustness against
environmental factors like interference and multipath reflec-
tions while optimizing computational efficiency for real-time
applications. Improvements in the signal processing pipeline
could further reduce noise and enhance audio quality without
integrating machine learning techniques. Expanding experi-
mental validation across diverse real-world scenarios would
provide deeper insights into the system’s scalability and per-
formance. Such advancements could establish mmWave radar
as a key tool for non-contact speech eavesdropping systems.

VI. CONCLUSION

This paper demonstrated the feasibility and effectiveness
of reconstructing speech signals from mmWave radar data
without relying on deep learning. The proposed methodol-
ogy, mmProcess, successfully captured and analyzed minute
vibrations caused by sound on objects by leveraging the phase
information of mmWave signals. The combination of signal
processing techniques, including range processing, peak de-
tection, phase unwrapping, and noise filtering, enabled reliable
speech signal reconstruction even in challenging environments.

Unlike deep learning-based methods, mmProcess does not
require large training datasets or extensive computational re-
sources and overcomes the limitations of reduced performance
when processing languages not included in the training data.
This makes the methodology highly adaptable for scenarios
such as privacy-sensitive environments and remote speech
sensing, where traditional microphones or deep learning ap-
proaches may be impractical.

This study establishes a strong foundation for advancing
mmWave-based audio processing, particularly in eavesdrop-
ping applications. Future research could focus on enhancing
robustness against environmental factors like interference and
multipath reflections, as well as optimizing computational
efficiency for real-time processing. Additionally, expanding
experimental validation across diverse real-world scenarios
could provide deeper insights into the system’s scalability and
performance.
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