
Analysis of Misconfigured IoT MQTT Deployments
and a Lightweight Exposure Detection System

Seyed Ali Ghazi Asgar
Texas A&M University

alighazi@tamu.edu

Narasimha Reddy
Texas A&M University

reddy@tamu.edu

Abstract—The Internet of Things (IoT) is experiencing expo-
nential growth, with projections estimating over 29 billion devices
by 2027. These devices often have limited resources, necessitating
the use of lightweight communication protocols. MQTT is a
widely used protocol in the IoT domain, but defective security
configurations can pose significant risks for the users. In this
work, we classify the most commonly used open-source IoT
applications that utilize MQTT as their primary communica-
tion protocol and evaluate the associated attack scenarios. Our
analysis shows that home automation IoT applications have the
highest number of exposed devices. In addition, our examination
suggests that tracking applications are prone to higher risks as
the normalized percentage of exposed devices for this category
is 6.85% while only 2.91% of home automation devices are
exposed. To tackle these issues, we developed a lightweight, open-
source exposure detection system suitable for both computer-
based clients and ESP32 microcontrollers. This system warns the
users of compromised MQTT broker which enhances the overall
security in IoT deployments without any significant overhead.

I. INTRODUCTION

The Internet of Things (IoT) has varying definitions as
it involves integrating devices into different facets of life,
from cities, cars, roads to homes, and personal devices. These
devices interact and exchange data, which is then processed
to perform specific tasks. This ecosystem is expected to grow
significantly and potentially surpass the mobile phone market
[14], [1], [12]. According to [23], there are currently more
than 16 billion active IoT devices, with projections indicating
this number will exceed 29 billion by 2027.

IoT devices commonly encompass sensors, actuators, or
have a portable form factor, often constrained by resource
limitations such as power availability, memory constraints, and
computational capacity [28], [25]. To address these challenges,
the selection of an appropriate protocol to exchange informa-
tion becomes important.

Extensible Messaging and Presence Protocol(XMPP), Hy-
pertext Transfer Protocol(HTTP), Advanced Message Queuing
Protocol (AMQP), Constrained Application Protocol (CoAP),
and Message Queuing Telemetry Transport (MQTT) are the

most widely used protocols [3], [17]. HTTP and CoAP have a
significant overhead because of their text-based structure and
using RESTful approach (which requires constant polling).
XMPP, AMQP, and MQTT rely on message-oriented bro-
ker/client architecture, enabling asynchronous communication,
however, XMPP requires significant memory space due to
XML data processing and AMQP is also more suitable for
server-to-server communication. XMPP and AMQP both re-
quire authentication processes. On the other hand, MQTT
is specially designed for constrained devices which require
minimal resources of bandwidth, memory and processing
power [17] and password authentication can be bypassed as
well.

Securing MQTT protocol is really important as many IoT
devices use these protocol for communicating. Username and
password based authentication is optional for MQTT, so,
many people might ignore providing an appropriate username
and password for the communication leading to exposure of
their messages to everyone on the network. In addition, even
if an appropriate username and password authentication is
used, since the messages are not encrypted and are trans-
ported over TCP protocol openly, eavesdropping, man-in-the
middle (MITM) attacks, and password stealing are probable
attack scenarios [9]. MQTT also supports TLS/SSL for extra
security, but not all the IoT devices have the capabilities
to use TLS/SSL. Moreover, managing certificates and keys
between devices is another issue with this solution. In ad-
dition to that, SSL/TLS also suffers from attacks such as
BEAST, and Heartbleed attack [29]. In [29], authors proposed
a secure MQTT (SMQTT) protocol which provides a more
robust security mechanism for IoT communications. By using
Key/Ciphertext Policy-Attribute Based Encryption (CP/KP-
ABE) with lightweight Elliptic Curve Cryptography (ECC).
Researchers in [9] analyzed security vulnerabilities in the
MQTT protocol using the Shodan API and an experimental
environment using a Raspberry Pi as a MQTT broker, with
Python clients acting as publishers and subscribers. They
identified security issues at packet and topic level and imple-
mented countermeasures including certificates, secure sockets,
payload encryption, and ACLs. Moreover authors in [27]
propose a security framework for MQTT, called AugMQTT,
incorporating the AugPAKE [26] protocol to improve security
without the need for certificate validation and revocation
checks. AugMQTT uses AugPAKE to secure session keys and

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2025
24 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-6-6
https://dx.doi.org/10.14722/sdiotsec.2025.23010
www.ndss-symposium.org



Fig. 1. There are more than 500,000 open devices on the internet using MQTT
protocol without any password and username according to Shodan using the
search term ”port:1883 MQTT Connection Code: 0”.

ensure message confidentiality by eliminating complex Public-
Key Infrastructures (PKI) requirements.

Although researchers have come up with lightweight, scal-
able more secure encryption methods for MQTT [29], [20],
[24], [27], these methods are not still widely used by the
community. A search for the devices that use MQTT protocol
on Shodan shows more than 500,000 devices over the internet
with their MQTT port (1883) open without any security
measures (see Fig. 1). Hence, it is necessary to assess the
implications of insecure MQTT implementations and publicly
exposed MQTT devices.

In this work we investigate the most commonly used open
source applications over the MQTT protocol and evaluate
the risk factors associated with each of them in case of an
attack. To mitigate the public exposure of MQTT devices and
messages, we will provide a framework for alerting the user of
accidental exposure to the internet by the well-known security
search engines. It this work we focus on no-authentication
misconfiguration and other misconfigurations such as access
control list, rate limits, and etc, can be explored in future
works. The contributions of this paper are as follows:

• Investigating top open source repositories in the IoT
domain that use MQTT as their communication protocol

• Assessing the number of misconfigured and exposed IoT
devices over the internet.

• Classifying each of the repositories based on their appli-
cations.

• Evaluating attack scenarios and risk associated with each
of the classes.

• Developing an exposure detection system based on search
engines like Shodan.

• Developing the exposure detection system for both micro-
controllers (ESP32) and personal computers (PC) using
Python.

• Dockerizing the developed application for easy deploy-
ment and scalability.

The rest of the paper is organized as follows. In section I-A,
we will provide a brief overview of MQTT protocol. Section II
discusses our methodology for selecting and classifying open
source repositories in IoT domain. Section III discusses the
risk associated with each class of the applications. Then we

will provide our proposed solution and a real-world experiment
of our system in sections IV and V. Finally, in section VII we
will summarize our work.

A. Structure of MQTT protocol

MQTT is a lightweight publish/subscribe protocol that is
built on top of TCP/IP for machine to machine (M2M)
communication [18]. The MQTT protocol consists of two main
components, clients and a broker. Clients can interact with the
broker through two main functions which are publishing and
subscribing. Clients can send messages to the broker on a topic
using publish command. In addition, whenever clients need to
receive messages on a specific topic, they can subscribe to that
topic through the broker [31].

Clients can use wildcards such as “+” and “#” for sub-
scribing to the topics. Single-level wildcard “+” is used for
exactly one level topic subscription. For instance, when a client
subscribes to the “school/+/humidity” topic, it will also receive
information from

• “school/office/humidity”
• “school/class1/humidity”,
• and “school/lunchroom/humidity”

Multi-level wild card “#” is used for subscribing to a wide
range of topics. As an example, when the client subscribes to
the “school/#” it will receive messages from

• “school/office/temperature”
• “school/lunchroom/lights”,
• “school/office/humidity”,

and any topic that begins with “school/” [11].
When a client tries to connect to the broker, the broker

will respond with a connection code. Connection code ‘0’
implies that the client successfully connected to the server and
connection codes from ‘1’ to ‘5’ are the results of unacceptable
version, identifier rejected, server unavailable, bad username
or password and not authorized error respectively [3], [19].

II. CLASSIFICATION METHOD

A. Selecting top open source repositories

In order to find the most commonly used open source
applications that utilize MQTT protocol we followed the
flowchart given in the Fig. 2. We first searched for the term
MQTT in the GitHub and then sorted the results based on the
stars of each repository. In the next step, we went through
them one by one and eliminated the repositories that were
offering MQTT brokers such as Eclipse, Mosquitto, HiveMQ,
RabbitMQ, EMQX and etc since we are more interested in
evaluating the applications of MQTT rather than the MQTT
broker itself. In the next step we evaluated the repository and
checked if it is used in IoT area or not. Afterward, we searched
for the application on Shodan and reported the number of
found records and ignored the repositories that had less than
900 stars because they were too customized and not widely
used by the community. The threshold for the number of
Shodan records was set to 10 and repositories with less than
10 records were eliminated.

2



Fig. 2. The flowchart of the method used for selecting mostly used open
source repositories that utilize MQTT protocol for IoT applications.

B. Classifying the repositories

After selecting the repositories, we classified each of them
based on their applications. Based on our assessment, these
repositories fall in the following groups: home automation
(such as lights, heaters, air conditioners, air quality sensors,
presence sensors, flow meters, etc ), Energy monitoring (elec-
trical vehicle(EV) charging, solar panels, or inverters), camera
related, and tracking applications. Therefore, we classified and
marked each of the repositories into corresponding groups as
follows: HA for home automation, EM for energy monitoring,
CM for camera related, and TR for device tracking reposito-
ries. Although some of theses libraries might reside in multiple
different categories, we assigned them based on their primary
application. We also provided our search terms on the Shodan
search engine for querying the records in the Table I.

III. INVESTIGATING EXPOSED IOT CATEGORIES

A. Top repositories

Table II shows the top open source repositories that use
MQTT protocol in different categories. We sort each of them
based on the stars of each repository as mentioned in the Fig.
2. Afterward, we placed all of these 10 repositories into HA,
CM, TR, and EM groups as we discussed in the previous
section.

B. Attack scenarios

In this section we will analyze each class of the repositories
and then will provide attack scenarios and discuss conse-
quences of the exposure of them to the internet. We list the
search terms utilized to query the records from Shodan in the
Table I so it can be replicated in the future. We report on
the number of records found on Shodan at the time of our
work, but noticed that the number of records are increasing
over time.

When a broker can be reached without authentication,
an attacker can subscribe to the messages to compromise

TABLE I
SEARCH TERM USED FOR EACH REPOSITORY TO QUERY THE RECORDS

FROM SHODAN

Repository search term
home-assistant homeassistant port:1883

Tasmota Tasmota port:1883
frigate frigate

zigbee2mqtt zigbee2mqtt port:1883
esphome esphome port:1883
teslamate teslamate port:1883

evcc evcc port:1883
owntracks owntracks port:1883

ESPresense espresense port:1883
ahoy ahoy port:1883

privacy. In addition, the attacker can send doctored messages
with identical names to convey different/false information to
subscribers.

C. Home automation(HA) IoT repositories

A noticeable number of exposed devices are in the home
automation category. IoT devices for home automation are
widely used by the community and comprise a wide range
of sensors such as smoke detectors, motion sensors, presence
sensors, heat sensors, air conditioning system controllers, light
sensors, leak sensors, window and door sensors [8], [16].
An attacker can create discomfort for the victim by toggling
lights, or changing the air conditioner temperature to too
hot or cold temperatures. In addition, some attacks can go
beyond this point and even open the home’s door through
the home automation system [2], [21]. Another important
point about Home automation system is that attackers can
get the knowledge of the presence and the number of people
currently inside the house and further exploit this information.
For instance, ESPresense library is widely used for detecting
the presence of a person inside the house which also can
be used by malicious attacker to gain more knowledge about
the victim. Home-assistant is a widely used IoT platform by

TABLE II
TOP OPEN SOURCE REPOSITORIES THAT USE MQTT PROTOCOL FOR IOT

APPLICATIONS

Repository Application Stars Shodan
Records Class

home-
assistant Home automation 69.3K 1,221 HA

Tasmota IoT firmware for ESP
MCU 21.6K 1,225 HA

frigate Object Detection for IP
cameras 15.2K 130 CM

zigbee2mqtt A brdige to control
Zigbee via MQTT 11.3K 690 HA

esphome Home automation 7.9K 85 HA

teslamate Data logger for Tesla
car 5.4K 230 TR

evcc Home and EV energy
controller 2.7K 10 EM

owntracks Mobile tracking
application 1.3K 230 TR

ESPresense Presence detection 1.3K 24 HA
ahoy Logger for inverters 929 10 EM

3



the community. However, there are more than 1200 exposed
devices on Shodan because of the misconfiguration by the
users. Tasomato, and esphome are other repositories that use
an ESP32 micro-controller as the MQTT broker and other
sensors can exchange their data with this micro-controller over
the MQTT protocol.

D. Camera related(CM) IoT repositories

Home security cameras are growing fast. Most cameras
support live stream mode and motion detection mode [15],
[7]. Frigate is an open source local network video recorder
(NVR) library that is capable of real time object detection
using image processing techniques and deep learning based
image recognition. Another benefit of this library is that it can
be merged with home-assistant easily. Based on the Shodan’s
records, there are more than 130 instances of exposed cameras
using frigate application for monitoring their environment. As
a result, people are openly publishing their cameras over the
network which can lead to privacy and security issues.

E. Device tracking (TR) IoT repositories

Tracking smart devices such as tablets and mobile phones is
beneficial when people lose their devices or when parents want
to track their small children throughout the day for their safety.
Owntracks is an open source application that can be used
on both IOS and Android devices for tracking your device.
However, there are more than 200 instances on Shodan where
people are exposing their location over the internet without any
need for authentication. Therefore, attackers can track victims
using the exposed devices that are using MQTT protocol by
transferring the information from the main broker. Teslamate is
another open source library that can be installed on Tesla cars
to log the information about the car’s state such as mileage,
doors and windows state, odometer, battery level, temperature,
speed and elevation. Another interesting feature of Teslamate
is that it can also log the car’s location and send it to the server.
Unfortunately, based on the Shodan’s record there are more
than 200 Tesla cars that do not have any authentication for their
MQTT server and Teslamate is openly sending the information
to the MQTT broker. An attacker can also subscribe to the
MQTT broker easily and gather information about the location
of the car which can lead to the leakage of private information
such as work place, house, and favorite places [5], [22], [4].
We found that even some companies are publishing their data
without any protection. For instance, during this work we
encountered some records on Shodan related to a trucking
company that was transmitting the locations of its trucks to the
MQTT broker openly. Upon realizing this issue we contacted
them and they were able to add authentication process to their
system.

F. Energy management (EM) IoT repositories

Solar energy is a fast growing source of energy in the past
decades [13] and photovoltaic (PV) technology advancements
boosted the efficiency of solar panels. many governments also
offer support to the solar energy users such as tax credits

or tax exception which can decrease the cost of installing
solar panels [6], [30]. Therefore, many people are attracted to
PV panels due to a variety of reasons such as environmental
and economic aspects. These solar panels are connected to
an inverter which can turn the DC voltage into the AC
voltage [10]. Most solar panel companies offer monitoring
solutions for measuring voltage, current, wattage, and other
smart metering parameters related to the panels or inverters.

Unfortunately, due to the security misconfigurations in the
MQTT communication they are prone to cyber attacks. For in-
stance ‘evcc’ and ‘ahoy’ repositories both offer logging system
and smart metering for energy management, but because of the
lack of authentication and security standards on their MQTT
protocol they are exposed on Shodan which can lead to serious
damage to their infrastructure. For instance, an attacker can
change the charging limit of electrical devices or start/stop the
charging process which can lead to discomfort for the owner.

G. Comparing different classes

To estimate the number of users for each application, we
used the number of GitHub stars as a metric. As it is shown
in the Fig. 3, home automation applications with 81% is
placed at the top of the list. Camera based applications (11%)
take second place, location tracking and energy management
repositories are placed at the subsequent order, with 5% and
3% of the total share respectively.

Another interesting observation according to the Fig. 4 is
that the percentage of the exposed TR applications are higher
than other classes. The main reason for this exception can
be explained by the fact that users must install the tracking
applications on the moving devices such as smart phones or
vehicles, therefore, the MQTT broker and the clients are not
within the same network. As a result, if the MQTT broker is
misconfigured and anonymous connections without username
and password are allowed, the locations of the users are
compromised. On the contrary, most of the HA, EM, and CM
devices are stationary and located within the same network.
In addition, it is not mandatory for the users to connect their

Fig. 3. Proportion of each repository class according to the number of GitHub
stars.

4



MQTT broker to the internet. Hence, even if the MQTT
connection itself is not secured these applications are prone to
fewer cyber attacks as they are within a local network and not
on the internet . However, for TR applications having internet
connection is a must and cannot be skipped which results in
higher percentage of compromised devices. Based on the given
explanation and significant growth of electrical vehicles and
smart cars, we can expect to have more cybersecurity threats
for electrical vehicles specifically related to the third party and
open source applications that can be installed by the users.

IV. PROPOSED EXPOSURE DETECTION SYSTEM(EDS)

Based on the evidence provided in the previous sections,
it is clear that exposed IoT devices pose a great risk for
users, especially when their IP addresses are available on
cybersecurity search engines such as Shodan, Censys, Onyphe,
Zoomeye, and Criminalip. To tackle this problem, we created
an exposure detection system that can actively scan the search
engines to check if the MQTT broker is exposed or not. For
a proof of concept implementation of the method, we used
Shodan search engine to automate the process using free APIs.
As it is shown in the Fig. 5 the EDS constantly publishes its
MAC address to the MQTT broker as a retained message.
In MQTT protocol retained messages are stored inside the
broker such that when a new client subscribes to the broker,
broker sends the last available message to the new subscribers.
Therefore, once a cybersecurity search engine such as Shodan
connects to the MQTT broker and listens to all the topics,
it will receive and store a topic named “MAC ADDRESS“
followed by the MAC address of the EDS. For instance, if the
MAC address is “C8215DEE6D60“, the search engine will
save the “MAC ADDRESS/C8215DEE6D60“ as the record.
In the next step, since EDS is constantly querying for its MAC
address on the search engines, once it finds the record which
matches its MAC address, it will send an alert topic to the

Fig. 4. The ratio of number of exposed devices to the number of stars for
each class of IoT repositories. This metric indicates a normalized percentage
of the exposed devices for each category.

Fig. 5. The structure of exposure detection system. First the MAC address
is sent to the MQTT broker using the “MAC ADDRESS“ topic. Second, if
cybersecurity search engines connect to the local MQTT broker, they will
get a copy of the “MAC ADDRESS“ topic and save it. Third, the exposure
detection system queries for the MAC address periodically and once it finds
a record, it will publish an alert topic to the MQTT broker in step four.

MQTT broker notifying the exposure status. In this work we
implemented three different versions of this system, the first
one is based on the Python language that is dockerized for
easy deployment and scalability, and the second version is
implemented for resource-constrained environments on top of
an ESP32 micro-controller. In the third version, we unified
the MQTT broker and the exposure detection system in a
single docker-compose file such that once the broker is up and
running, the EDS system is automatically deployed without
any modification. We tested our EDS on both ESP32 and PC
using different keywords on Shodan and it was capable of
sending appropriate alerts to the main broker. We wrote 250
lines of C code for ESP32 and 230 lines of Python code for
the computer-based EDS.

Our open source code and instructions to use the
EDS are available at https://github.com/ali-ghazi78/
mqtt-exposure-detection.

V. EXPERIMENT

To experiment the proposed method, we deployed a MQTT
broker (Eclipse Mosquitto) on a server with the port 1883 open
for remote connection. We also allowed any IP to connect
to the server as many exposed servers turn on this feature.
To save our record on Shodan and experiment our method,
we used Shodan on-demand scanning tool. After using the
Shodan’s API we got our record on the Shodan’s website. As
it is shown in the Fig. 6, we published three main topics,
the ”/camera” topic which resembles an IoT camera data, the
MAC address that we used as our unique identifier (UID)
“C8215DEE6D60“, and the last topic is the “expose status“
topic which sends the exposure status to the main broker. We
also provided the logs of our EDS system in Fig. 7. Before
exposing our device (Fig. 7(a)), the search result is returning
“False“ value and “expose status“ topic is also seeing “False“
to the main Broker. However, Once the broker is exposed to the
search engine (Fig. 7(b)), the “expose status“ starts sending
“True“ Value as well as the timestamp to the main broker.

5



Fig. 6. The shodan record that exposes our experimental MQTT server.
Shodan also provides the retained topics that are used within the MQTT
broker.

Therefore, the user can take appropriate actions and fix the
vulnerabilities in the system.

This experiment validated our approach in detecting when
an MQTT broker is exposed to the internet. This is a light-
weight scheme that can be easily integrated into any MQTT
application to provide exposure detection capability.

VI. LIMITATION

While this work investigated the IoT deployment that does
not require any authentication, there could be other miscon-
figuration scenarios. For instance, we did not consider access
control list, rate limit configuration, or other vulnerabilities. In
addition, our EDS system focused on external exposure, the
absence of authentication can also be a threat within the local
network. Our EDS system is dependent on search engines and
hence it might take some time before the misconfigurations
are discovered add added to their databases.

VII. CONCLUSION

MQTT protocol is heavily used by the community for IoT
applications. However, the surge in IoT devices causes security
issues from lack of encryption and authentication. In this work
we studied widely used open source repositories, classified
them based on their applications and evaluated the risks
associated with each of them. The number of exposed devices
point to the urgent need for securing MQTT implementation to
mitigate risks and cyber threats. To mitigate this problem, we
developed an exposure detection system that scans these search
engines to detect and alert if an MQTT broker is exposed. Our
system is implemented in different versions with Python and
ESP32 micro-controllers providing an automated exposure de-
tection and alerting system. To further prove the effectiveness
of our system, we also set up a Mosquitto MQTT broker and
evaluated our EDS system in a real-world environment and
showcased before and after exposure scenarios. Finally, our
system proved to be effective in detecting a misconfigured
MQTT broker and alerting the user.

Fig. 7. (a) Shows the log of EDS system before being exposed. (b) Shows
our alerting system after being exposed which sends the status of exposure
to the main broker with the “True“ Flag and timestamp.

ACKNOWLEDGMENT

This work is supported in part by the NSF Grant CCRI
2234972. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding organiza-
tions.

REFERENCES

[1] Antar Shaddad Abdul-Qawy, PJ Pramod, E Magesh, and T Srinivasulu.
The internet of things (iot): An overview. International Journal of
Engineering Research and Applications, 5(12):71–82, 2015.

[2] Cornelio Revelivan Aldawira, Handhika Wiratama Putra, Novita
Hanafiah, Surya Surjarwo, Aswin Wibisurya, et al. Door security system
for home monitoring based on esp32. Procedia Computer Science,
157:673–682, 2019.

[3] Syaiful Andy, Budi Rahardjo, and Bagus Hanindhito. Attack scenarios
and security analysis of mqtt communication protocol in iot system. In
2017 4th international conference on electrical engineering, computer
science and informatics (EECSI), pages 1–6. IEEE, 2017.

[4] Chih-Che Chang, Chia-Mei Chen, and Han-Wei Hsiao. Applying an
iot analytics framework in east asia area. In International Computer
Symposium, pages 421–433. Springer, 2022.

[5] David Colombo. How i got access to 25+ tesla’s around the world. by
accident. and curiosity, 2022.

[6] Christine Lasco Crago and Ilya Chernyakhovskiy. Are policy incentives
for solar power effective? evidence from residential installations in
the northeast. Journal of Environmental Economics and Management,
81:132–151, 2017.

[7] Saman Fatima, Naila Aiman Aslam, Iqra Tariq, and Nouman Ali. Home
security and automation based on internet of things: a comprehensive
review. In IOP Conference Series: Materials Science and Engineering,
volume 899, page 012011. IOP Publishing, 2020.

[8] Ruben Figueiredo, Anı́bal Alves, Vitor Monteiro, J Pinto, João Afonso,
and José Afonso. Development and evaluation of smart home iot systems
applied to hvac monitoring and control. EAI Endorsed Transactions on
Energy Web, 8(34), 2020.

[9] MS Harsha, BM Bhavani, and KR Kundhavai. Analysis of vulnerabilities
in mqtt security using shodan api and implementation of its countermea-
sures via authentication and acls. In 2018 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
pages 2244–2250. IEEE, 2018.

[10] Ulrich Herrmann, Hans Georg Langer, and Heinz Van Der Broeck. Low
cost dc to ac converter for photovoltaic power conversion in residential
applications. In Proceedings of IEEE Power Electronics Specialist
Conference-PESC’93, pages 588–594. IEEE, 1993.

[11] Ahmed J Hintaw, Selvakumar Manickam, Mohammed Faiz Aboalmaaly,
and Shankar Karuppayah. Mqtt vulnerabilities, attack vectors and
solutions in the internet of things (iot). IETE Journal of Research,
69(6):3368–3397, 2023.

6



[12] Falguni Jindal, Rishabh Jamar, and Prathamesh Churi. Future and
challenges of internet of things. Int. J. Comput. Sci. Inf. Technol,
10(2):13–25, 2018.

[13] Daniel M Kammen. The rise of renewable energy. Scientific American,
295(3):84–93, 2006.

[14] Kaivan Karimi and Gary Atkinson. What the internet of things (iot)
needs to become a reality. White Paper, FreeScale and ARM, pages
1–16, 2013.

[15] Jinyang Li, Zhenyu Li, Gareth Tyson, and Gaogang Xie. Your privilege
gives your privacy away: An analysis of a home security camera
service. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 387–396. IEEE, 2020.

[16] Bruno Mataloto, Joao C Ferreira, and Nuno Cruz. Lobems—iot for
building and energy management systems. Electronics, 8(7):763, 2019.

[17] Aimaschana Niruntasukrat, Chavee Issariyapat, Panita Pongpaibool,
Koonlachat Meesublak, Pramrudee Aiumsupucgul, and Anun Panya.
Authorization mechanism for mqtt-based internet of things. In 2016
IEEE international conference on communications workshops (ICC),
pages 290–295. IEEE, 2016.

[18] MQTT Organization. Mqtt: The standard for iot messaging. https:
mqtt.org, 2022.

[19] Andrea Palmieri, Paolo Prem, Silvio Ranise, Umberto Morelli, and
Tahir Ahmad. Mqttsa: A tool for automatically assisting the secure
deployments of mqtt brokers. In 2019 IEEE World Congress on Services
(SERVICES), volume 2642-939X, pages 47–53, 2019.

[20] Chang-Seop Park and Hye-Min Nam. Security architecture and protocols
for secure mqtt-sn. IEEE Access, 8:226422–226436, 2020.

[21] Yong Tae Park, Pranesh Sthapit, and Jae-Young Pyun. Smart digital door
lock for the home automation. In TENCON 2009-2009 IEEE Region 10
Conference, pages 1–6. IEEE, 2009.

[22] JA Quintana, JM Álvarez, J Jiménez Verde, and J Barruetabeña Pujana.
A holistic approach on automotive cybersecurity for suppliers. Proceed-
ings of the VEHICULAR, 2023.

[23] Sinha S. State of IoT 2023: Number of connected IoT devices growing
16 https://iot-analytics.com/number-connected-iot-devices/, 2023. [Ac-
cessed 30-05-2024].

[24] Ousmane Sadio, Ibrahima Ngom, and Claude Lishou. Lightweight
security scheme for mqtt/mqtt-sn protocol. In 2019 Sixth International
Conference on Internet of Things: Systems, Management and Security
(IOTSMS), pages 119–123. IEEE, 2019.

[25] Zhengguo Sheng, Hao Wang, Changchuan Yin, Xiping Hu, Shusen
Yang, and Victor CM Leung. Lightweight management of resource-
constrained sensor devices in internet of things. IEEE internet of things
journal, 2(5):402–411, 2015.

[26] S Shin and Kazukuni Kobara. Efficient augmented password-only
authentication and key exchange for ikev2. 2012.

[27] SeongHan Shin, Kazukuni Kobara, Chia-Chuan Chuang, and Weicheng
Huang. A security framework for mqtt. In 2016 IEEE Conference on
Communications and Network Security (CNS), pages 432–436. IEEE,
2016.

[28] Soraya Sinche, Duarte Raposo, Ngombo Armando, André Rodrigues,
Fernando Boavida, Vasco Pereira, and Jorge Sá Silva. A survey of iot
management protocols and frameworks. IEEE Communications Surveys
Tutorials, 22(2):1168–1190, 2020.

[29] Meena Singh, MA Rajan, VL Shivraj, and Purushothaman Balamuralid-
har. Secure mqtt for internet of things (iot). In 2015 fifth international
conference on communication systems and network technologies, pages
746–751. IEEE, 2015.

[30] Govinda R Timilsina, Lado Kurdgelashvili, and Patrick A Narbel. Solar
energy: Markets, economics and policies. Renewable and sustainable
energy reviews, 16(1):449–465, 2012.

[31] Muneer Bani Yassein, Mohammed Q. Shatnawi, Shadi Aljwarneh, and
Razan Al-Hatmi. Internet of things: Survey and open issues of mqtt
protocol. In 2017 International Conference on Engineering MIS
(ICEMIS), pages 1–6, 2017.

7


