
DQN-IDS: A Deep Reinforcement Learning
Approach for Open Set-Enabled Intrusion Detection

Shreyash Tiwari
Computer and Information Science

University of Massachusetts Dartmouth
Dartmouth, MA, USA
stiwari4@umassd.edu

Nathaniel D. Bastian
Electrical Engineering and Computer Science

United States Military Academy
West Point, NY, USA

nathaniel.bastian@westpoint.edu

Gokhan Kul
Computer and Information Science

University of Massachusetts Dartmouth
Dartmouth, MA, USA

gkul@umassd.edu

Abstract—Intrusion Detection Systems (IDS) remain vulnera-
ble to zero-day attacks that manifest themselves as previously un-
seen traffic patterns. Traditional neural IDS models, constrained
by closed-world assumptions, often misclassify such traffic as
benign, leading to significant security risks. We present DQN-
IDS, a deep reinforcement learning framework that integrates
a Convolutional Neural Network (CNN) for feature extraction
with a Deep Q-Network (DQN) for uncertainty-aware decision-
making. Unlike threshold-based open-set methods, DQN-IDS
dynamically learns to separate known and unknown traffic
using softmax-derived confidence metrics maximum probability,
probability gap, and entropy as its state representation. Evaluated
on the CICIDS-2017 and UNSW2015 datasets, the proposed
system achieves a binary F1-score of 97.8% (known vs. unknown)
and reduces missed zero-day traffic compared to state-of-the-
art threshold-based approaches. The DQN stage introduces
negligible runtime overhead relative to CNN inference, yielding
a deployable two-stage open-set NIDS suitable for IoT and other
resource-constrained environments.

I. INTRODUCTION

Zero-day attacks exploit new or previously unexplored
vulnerabilities in a system, making them difficult to detect
using traditional methods [1]. Deep learning–based Network
Intrusion Detection Systems (NIDS) are inherently limited
by the scope of their training datasets [2]. As a result, they
may misclassify previously unseen attack patterns as benign
traffic, creating significant security risks. To mitigate this
limitation, prior work has explored threshold-based approaches
such as OpenMax [3], varMax [1], open set recognition [4],
and energy-based confidence calibration [5] to handle low-
confidence predictions. However, these methods typically rely
on manually tuned thresholds, which limits their adaptability
in real-time or evolving network environments where confi-
dence margins vary across traffic distributions [6], [7]. Open
set recognition (OSR) is a machine learning paradigm that
enables models to classify known classes while identifying
samples that do not belong to any known category. Unlike

closed-set recognition, which assumes that all test samples
belong to predefined classes, OSR explicitly accounts for
unknown or novel inputs, making it particularly suitable for
intrusion detection in dynamic environments. In the context
of NIDS, OSR helps detect previously unseen traffic that
might otherwise be misclassified as benign or as a known
attack class. This capability is critical in real-world networks,
where new attack vectors frequently emerge and models must
generalize beyond their training data. However, many OSR-
enabled NIDS suffer from degraded performance on known
classes [8]. Recent studies report that existing open-set NIDS
methods fail to detect approximately 28% of zero-day traffic
on average [1], [9], often due to their reliance on fixed
thresholds and manual post-processing strategies. In this paper,
we demonstrate that coupling uncertainty-aware features with
reinforcement learning (RL) enables robust zero-day detection
without relying on predefined thresholds. Our architecture inte-
grates a Convolutional Neural Network (CNN) with a softmax
output layer and a Deep Q-Network (DQN) that operates
on the CNN’s confidence outputs to determine whether a
sample should be classified as known or unknown. The DQN
learns a decision policy based on uncertainty patterns while
preserving classification performance on known traffic. This
approach avoids static decision rules and does not require
labeled unknown samples during training. We present a hybrid
framework that integrates a Deep Q-Network (DQN) with a
deep neural network backbone. While a CNN is used in this
work, the framework can be extended to other deep architec-
tures. The CNN is trained on a subset of classes designated as
the known set, while selected classes are withheld to simulate
unknown attacks. During evaluation, the system is tested on
the full class set, including unseen attack types. As expected,
the supervised CNN exhibits lower confidence on unknown
samples. To exploit this behavior, softmax-derived confidence
features—maximum class probability (P1), probability gap
(P1–P2), and Shannon entropy are passed to the DQN, which
learns to distinguish known from unknown traffic based on
these uncertainty signals. We evaluate the proposed system
using the CICIDS-2017 dataset [10] as our main training data,
which aggregates multiple types of network activities and ex-
hibits significant class imbalance. To support controlled open-
set evaluation, we use a balanced subset of the dataset and
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intentionally exclude selected classes from training to serve
as unknown traffic during testing. We also include UNSW
dataset [11] samples as additional unknown samples for our
tests While the CNN occasionally assigns high confidence to
certain unknown samples, such cases are relatively infrequent
and reflect a known limitation of deep classifiers. These
scenarios motivate the need for a decision-making module
that reasons over confidence patterns rather than relying solely
on fixed thresholds. Building on the limitations of existing
approaches, most current zero-day detection methods rely
on static confidence thresholds to identify unknown samples.
In contrast, our proposed framework employs a dynamic,
reinforcement learning–based decision process that adaptively
distinguishes between high- and low-confidence outputs gen-
erated by the CNN, enabling threshold-free open-set intrusion
detection. Our experimental results demonstrate the effective-
ness of the proposed CNN+DQN framework for open-set
intrusion detection. The CNN achieves over 97.38% accuracy
on known classes, while the DQN significantly improves the
detection of unknown attacks, achieving a binary F1-score
of 97.83%. The hybrid system accurately classifies known
traffic while effectively separating it from unknown patterns,
demonstrating its suitability for zero-day attack detection.

II. RELATED WORKS

We surveyed several open-set and NIDS methods and aimed
to overcome their key limitations through our proposed ap-
proach.

A. Threshold-based Confidence

Threshold-based systems such as varMax [1], [8] use a
three-step pipeline to improve confidence-based detection
(i) the P1–P2 gap is used to assess prediction ambiguity,
(ii) logit variance identifies unfamiliar or uncertain inputs,
and (iii) energy-based scoring distinguishes in- versus out-
of-distribution samples. Evaluations demonstrate strong per-
formance in identifying zero-day attacks. However, varMax
uses confidence-based multi-metric modeling, but its statistical
boundaries can be sensitive to shifts, Which can fail to
generalize when the underlying dataset distribution shifts or
in live network traffic scenarios, limiting its applicability in
real-world deployments.

Our CNN + DQN framework removes the dependency on
fixed thresholds by transforming the CNN’s confidence metrics
(P1, P1–P2, entropy) into an adaptive, reinforcement-learning-
based decision process. Using centroid-guided rewards and
off-policy DQN training, the model dynamically adjusts to
evolving traffic patterns, autonomously separating known and
unknown attacks. This enables stable, scalable, and real-time
open-set intrusion detection without manual calibration, mak-
ing it significantly more robust and practical than threshold-
based approaches.

B. Unsupervised Zero-Day Detection

Unsupervised zero-day detection methods typically focus on
identifying deviations in incoming sample distributions. For

instance, Fang and Xie [9] combine InfoGAN-based feature
learning with OpenMax [3] to estimate the probability of
an input belonging to an unknown class. Specifically, Info-
GAN is used to learn rich latent feature representations of
network traffic, while OpenMax adjusts the classifier’s output
to account for potential unknown classes. Their evaluation on
CICIDS-2017, holding out one attack class at a time, achieves
strong accuracy (above 88%). However, this approach has
several limitations: it requires retraining for each withheld
class, involves extensive parameter tuning (e.g., alpha rank, tail
size), incurs high computational costs, and produces elevated
false-alarm rates, which reduces its practicality for dynamic
network environments.

Our CNN + DQN framework addresses these limitations by
modeling multiple withheld attack classes as a single unknown
category, reflecting the real-world need to detect previously
unseen attacks. By using softmax-derived confidence metrics:
P1, P1 − P2, and Shannon entropy as state features, the
system autonomously separates known from unknown traffic
without retraining or manually defined thresholds. Combined
with centroid-guided rewards and off-policy DQN learning,
this approach provides scalable, adaptive, and computationally
efficient open-set detection, making it well-suited for real-time
deployment in evolving network environments.

C. Reinforcement-Learning IDS

Reinforcement learning (RL) offers a natural framework
for open-set recognition because it enables an agent to learn
decision-making policies from feedback in the environment,
rather than relying solely on labeled training data. In the
context of intrusion detection, the RL agent can evaluate the
uncertainty or novelty of incoming traffic and adapt its actions
to maximize long-term detection performance, which is par-
ticularly useful for identifying unknown or zero-day attacks.
Prior work illustrates different applications of RL in IDS. For
example, Alavizadeh et al. [12] use fixed reward functions
with full supervision to classify network traffic in a closed-
world setting, while DeROL [13] leverages human-in-the-loop
reinforcement learning on NSL-KDD [14] to improve decision
reliability. However, these approaches have clear limitations:
they either require predefined reward structures and labels
or depend on manual human input, which introduces latency
and reduces scalability in dynamic network environments.
To overcome these limitations, our CNN + DQN framework
employs unsupervised, centroid-guided rewards within an off-
policy DQN setup. This allows the system to autonomously
learn from softmax-derived confidence metrics (P1, P1–P2,
entropy) and dynamically distinguish between known and
unknown traffic. By removing reliance on fixed thresholds, la-
bels, or human feedback, the approach provides adaptive, real-
time zero-day attack recognition, making it both efficient and
practical for deployment in evolving network environments.

We have developed DQN-IDS over policy-gradient or actor-
critic methods because:

• Experience replay stabilizes training in a 3D state space
(P1, P1–P2, entropy) which adds sample efficiency
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• The binary decision on known/unknown outcomes fits Q-
learning natively.

• Fixed targets and ϵ-greedy exploration avoid high-
variance updates common in on-policy methods.

TABLE I
OPEN-SET NIDS COMPARISON

Approach Input Adapt. Supervision
Threshold Logits, P1–P2 Low None
Unsup. Feat.+EVT Med. None
RL Raw High Full/Human
Ours P1, P1–P2, H High None

This design combines the strengths of multiple paradigms,
it uses confidence-based metrics inspired by thresholding
methods, adds unsupervised learning by avoiding the need
for labeled unknown samples, and integrates reinforcement
learning to adaptively refine decision-making. The approach
is also well suited for live-traffic deployment. The CNN can
be trained entirely on known traffic, while a small portion of
unlabeled real-world traffic can be used to tune and validate
the DQN before deployment, yielding a practical zero-day
detection model. Because the DQN learns boundaries from
uncertainty patterns rather than relying on manually selected
thresholds, it can be periodically updated with new unlabeled
traffic without retraining the CNN, making the system flexible
for continuously evolving network environments.

In summary, our CNN + DQN framework overcomes key
limitations of existing IDS approaches by learning from
softmax-derived uncertainty features in an unsupervised man-
ner to identify unknown attacks. Unlike traditional threshold-
based or closed-set methods, it removes dependence on manual
tuning and fixed decision rules. By combining CNN feature
extraction with off-policy, centroid-guided DQN learning, the
system remains efficient, scalable, and adaptive, enabling real-
time open-set intrusion detection in complex, shifting network
conditions. This hybrid design integrates unsupervised infer-
ence, reinforcement learning, and confidence-based reasoning,
making it robust to dynamic behavior and previously unseen
attacks while remaining practical for continuous, real-world
deployment.

III. METHODOLOGY

The methodology is divided into four parts: (1) threat model,
(2) network architecture and design, (3) hyperparameter selec-
tion, and (4) the algorithmic design of the confidence-aware
DQN used to detect unknown traffic.

A. Threat Model

An effective intrusion detection framework must specify
the assumptions under which it operates and the adversarial
capabilities it defends against. Our threat model defines the
attacker’s goals, actions, knowledge exposure, and system
boundaries while clarifying what DQN-IDS is and is not
designed to resist.
System Assumptions: We assume the NIDS is deployed at
an ingress point within an enterprise or IoT network, where

it receives raw network-flow features extracted from live
traffic. The upstream feature extractor and network monitoring
infrastructure are considered trusted. Namely,

• Traffic features cannot be altered post-capture without
detection.

• Attackers cannot tamper with flow timestamps, packet
statistics, or metadata.

• The CNN and DQN weights are protected against modi-
fication at runtime.

Traffic can be malicious, novel, or adversarial, but the model
input pipeline (feature sampling, normalization, batching) is
assumed uncompromised.
Adversary Goals:

The adversary seeks one or more of the following:
• Evasion attack through crafting traffic resembling benign

flows such that it is classified as known benign rather
than unknown/zero-day.

• Introduce previously unseen attack vectors with minimal
statistical deviation to avoid detection.

• Force the CNN to output high-confidence predictions on
malicious flows, bypassing the DQN open-set classifier.

• Gradually shift traffic distribution to distort centroid
evolution, weakening unknown detection boundaries over
time.

B. Network Architecture and Design

We built a 1D Convolutional Neural Network (CNN) on the
CICIDS-2017 dataset using the first 10 out of 15 classes for
training, while the remaining 5 minor classes were withheld
and introduced only during testing to simulate unknown or
zero-day attacks. The withheld classes were combined into
a single “unknown” category (label 10), and the CNN is
evaluated in a closed-set scenario that includes these samples.

To distinguish known from unknown traffic, we analyze the
CNN’s softmax outputs using three confidence-based metrics:

• P1: Maximum class probability
• P1−P2: Difference between the top two class probabil-

ities
• H: Shannon entropy of the softmax distribution
Shannon entropy (H) effectively captures the overall dis-

tribution of predicted probabilities, providing a measure of
uncertainty beyond raw logits or individual class scores.
While energy-based measures could also be used, we found
that softmax outputs alone provide sufficient discriminative
information. Entropy complements P1 and P1 − P2 by
reflecting the spread and ambiguity of predictions: known
samples typically yield high-confidence, low-entropy distri-
butions, whereas unknown samples produce low-confidence,
high-entropy outputs.

Using these three parameters together provides a robust,
interpretable, and computationally efficient method for open-
set classification. Unlike prior works [1], [8] that combined
probabilities with energy-based measures, we focus only on
the metrics that offer sufficient discriminative power, avoiding
unnecessary calculations. Fig. 1 shows the flow chart and
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Fig. 1. DQN-IDS Flowchart

Figs. 2, 3 and 4 illustrate the distributions of these metrics for
known versus unknown traffic in the test set, confirming the
effectiveness of this streamlined approach for distinguishing
zero-day attacks.

The CNN architecture is detailed in Table II. It includes
three Conv1D layers with increasing filter sizes (8, 24, 32),
each followed by ReLU activation, batch normalization, and
max pooling. A global average pooling layer and a 48-unit
dense layer follow before producing raw logits over the 10
training classes. The output layer uses softmax activation.

TABLE II
CNN ARCHITECTURE (CONV AND DENSE LAYERS)

Convolutional Layers
Layer Params Details
Input Shape (78, 1)
Conv1D f = 8 k = 3, L2=0.005, pad=same
ReLU+BN+Pool p = 2 —
Conv1D f = 24 k = 3, L2=0.005, pad=same
ReLU+BN+Pool p = 2 —
Conv1D f = 32 k = 3, L2=0.005, pad=same
ReLU+BN+Pool p = 2 —
GlobalAvgPool — —

Dense Layers
Layer Params Details
Dense u = 48 L2=0.005, ReLU
Dropout r = 0.5 —
Dense (Out) u = 10 Softmax

C. Hyperparameter Selection

The CNN uses L2 regularization (0.005) on convolutional
and dense layers to prevent overfitting, and a dropout layer
(rate = 0.5) after the dense layer to promote generalization.
The model is compiled with Adam optimizer (learning rate =
10−5, clipnorm = 1.0) and a custom loss function:

L = CE(y, ŷ) + 1.0 ·H(ŷ)

where CE is categorical cross-entropy and H(ŷ) =
−
∑

ŷi log ŷi is Shannon entropy, encouraging confident pre-
dictions.

The training set was balanced across the 10 selected known
classes. The Bot class, whose traffic patterns closely resemble
DoS attacks, is included in the known set to ensure balanced
learning.

TABLE III
DATASET SPLIT AND CLASS BALANCE

Set Total Known / Unknown
Validation 1,250 625 / 625
Test 11,269 9,667 / 1,602

D. Algorithmic Design: Confidence-Aware DQN

We split the dataset into a balanced validation set (10% of
total samples) and a test set. The validation set contains 1,250
samples (625 known and 625 unknown), while the test set
contains 11,269 samples (9,667 known and 1,602 unknown),
as shown in Table III. A validation set was used to calibrate the
DQN model for the centroid-guided reward, ensuring that low-
confidence and high-confidence samples could be effectively
separated. We use cosine similarity rather than Gaussian
distance because the three confidence features P1, (P1−P2),
and (H) entropy, operate on different numerical scales and
magnitudes. Gaussian or Euclidean metrics would impose a
magnitude bias, causing features with larger numeric ranges to
dominate the distance function. Cosine similarity is the perfect
option that we have to avoid this issue by comparing only the
direction of the confidence vectors, making it well-suited for
a mixed-scale 3D state space. We set a similarity threshold
of 0.75 for updating the centroids, preventing high-confidence
states from being distorted by low-confidence samples. This
constraint stabilizes learning and preserves a clean separation
between the evolving representations of known and unknown
traffic.

From validation, we select top/bottom 5% by P1 as initial
centroids ck (known) and cu (unknown), yielding 62 high-
confidence and 62 low-confidence anchor samples.

The DQN state is s = (P1, P1−P2, H). Actions are {0 =
unknown, 1 = known}.

1) Unsupervised Reward: Cosine similarity:

simk =
s · ck
∥s∥∥ck∥

, simu =
s · cu
∥s∥∥cu∥

Reward:

r =

{
max(simk, simu) if a = argmax(simk, simu)

−max(simk, simu) otherwise

r ∈ [−1, 1]

Centroids update only if similarity > 0.75:

c← c · n+ s

n+ 1
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Algorithm 1 DQN Training for Open-Set Detection
1: Initialize Q(s, a; θ) : 3→ 64→ 64→ 2
2: Initialize replay D, centroids ck, cu from top/bottom 5%

P1
3: for episode = 1 to 30 do
4: for each sample in 1,250 subsample do
5: s = (P1, P1− P2, H)
6: a ∼ ϵ-greedy(Q(s))
7: simk = cos(s, ck), simu = cos(s, cu)
8: r = max(simk, simu) if correct else −max
9: Store (s, a, r, s′, done) in D

10: if sim > 0.75 then update centroid c← c·n+s
n+1

11: end if
12: Sample minibatch (batch=32), update Q via TD

error
13: end for
14: Decay ϵ to min 0.05
15: end for

2) DQN Training: We subsample 1,250 validation samples
(excluding anchors) and select the top and bottom 5% based
on confidence metrics, resulting in 62 high-confidence and 62
low-confidence samples used for DQN training. Training is
performed for 30 episodes using experience replay (batch=32),
ϵ-greedy exploration (decaying from 1.0 to 0.05), discount
γ=0.95, and the Adam optimizer.

3) Why DQN (off-policy)?: We chose DQN over actor-critic
or policy gradients because:

• Sample efficiency: Experience replay stabilizes learning
in a low-dimensional state space (3D).

• Discrete actions: Binary decision (known/unknown) fits
Q-learning perfectly.

• Proven stability: Actor-critic methods suffer high vari-
ance in sparse-reward settings; DQN converges faster
with ϵ-greedy exploration.

IV. EXPERIMENTS

A. Confidence Metric Distributions

The purpose of analyzing the distributions of the three
softmax-derived confidence metrics is to verify whether known
and unknown traffic naturally separate in feature space before
any reinforcement learning is applied. Since our DQN operates
purely on these confidence features and not on raw logits or
class labels examining their statistical behavior is essential
for confirming that they provide a meaningful signal for dis-
tinguishing low-confidence (unknown) from high-confidence
(known) events. If the metrics exhibit clear separability, the
DQN can exploit this structure during training without the
need for supervision, manual thresholds, or human feedback.
Thus, this analysis validates that the inputs to the RL agent
contain sufficient discriminative information for open-set in-
trusion detection.

We first analyze the three confidence metrics extracted
from the CNN softmax outputs on the test set: maximum
probability (P1), probability gap (P1 − P2), and Shannon

Fig. 2. P1: Maximum class probability of samples

Fig. 3. (P1− P2): Distribution of known and unknown samples

entropy (H). The test set contains 10,292 known and 2,227
unknown samples. As shown in Fig. 2, known samples exhibit
high P1 values (0.9860±0.0663), while unknown samples are
significantly lower (0.6697±0.1280). Fig. 3 demonstrates that
P1 − P2 is large for known samples (mean = 0.9755, std =
0.1142) and near zero for unknowns (mean = 0.5072, std =
0.1890).

These distributions validate our hypothesis that unknown
traffic produces low-confidence, high-entropy predictions, pro-
viding a strong signal for open-set detection.

B. DQN-IDS Performance

The goal of this section is to demonstrate how effectively
the proposed DQN-based intrusion detection system converts
softmax derived confidence features into accurate open-set
decisions. Since The DQN operates without access to labels,
logits, or explicit thresholds, its performance must empirically

Fig. 4. H: Shannon entropy of the softmax distribution
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validate that reinforcement learning can reliably distinguish
known high-confidence traffic from unknown low-confidence
traffic in a fully unsupervised manner. The presentation of
these results confirms that the learned policy captures the un-
derlying structure in the confidence space and generalizes well
to unseen attacks. The full CNN+DQN pipeline is evaluated in
binary open-set mode (known vs. unknown). The DQN learns
to classify samples based on the 3D confidence state. Results
are shown in Table IV. DQN-IDS achieves a binary F1-score
of 97.83%, correctly identifying 9,465 out of 9,667 known
samples and 1,384 out of 1,602 unknown samples.

This demonstrates robust separation even under class im-
balance, with the DQN effectively leveraging the uncertainty
signals from the CNN to maintain high performance on both
known and unknown classes.

TABLE IV
DQN-IDS PERFORMANCE ON TEST SET

Metric Value
Binary Accuracy 96.27%
Binary F1-score 97.83%
Correct Known 9,465 / 9,667
Correct Unknown 1,384 / 1,602

C. Ablation Study

We ablate the DQN module in two ways: (1) replacing it
with fixed thresholds on individual confidence metrics, and (2)
varying the number of withheld unknown classes.

1) DQN vs. Fixed Thresholds: We compare DQN with
static thresholds on P1, P1− P2, and H . Results are shown
in Table V. DQN significantly outperforms all thresholds,
achieving 97.83% F1. Threshold-based methods suffer from
poor adaptability, especially on minority classes, with F1
scores dropping below 92%. This highlights the advantage of
DQN’s learned decision boundary over rigid rules.

TABLE V
PERFORMANCE COMPARISON ON KNOWN AND UNKNOWN ATTACK

DETECTION

Metric Ours VarMax
Dataset CICIDS 2017 CICIDS, UNSW
Test Size 11,269 ∼12k–15k
F1 Score (Known) 98.05% ∼74%
F1 Score (Unknown) 86.39% ∼71%
F1 Score (Binary Total) 97.83% ∼72–74%
Zero-Day Evaluation Yes Yes

D. Runtime Summary

To address concerns about the two-stage design, we evalu-
ated the runtime of both components and clarified their roles
during deployment. Each incoming flow is first processed by
CNN to produce confidence metrics P1, P1-P2, and H. Only
these three scalars are forwarded to the DQN, meaning that
CNN sets the upper bound on runtime while the DQN adds a
negligible decision step. CNN achieves an inference time of
0.5215 ms per sample ( 1.9k samples/s), which comfortably

meets the throughput requirements of IDS deployments. The
DQN, which operates on only three scalar inputs and is
implemented as a lightweight fully connected network, runs at
0.0241 ms per sample ( 41.5k samples/s). Its forward pass is
over 20 times faster than the CNN and is effectively cost-free
relative to the pipeline. This makes the two-stage architecture
as practical as one-stage close-set CNN IDS models with
added advantages. If we Compare it to other open-set IDS
like threshold-based systems (e.g., varMax), it removes manual
tuning overhead; compared to unsupervised GAN/OpenMax
pipelines, it avoids retraining and heavy parameterization; and
unlike prior RL-based IDS, it requires no labels or human-
in-the-loop feedback. The result is a more flexible, scalable
and low-latency alternative for real-world intrusion detection
where both accuracy and runtime constraints matter. A deploy-
able 2-stage Zero-day detection IDS.

TABLE VI
INFERENCE RUNTIME COMPARISON OF CNN CLASSIFIER AND DQN

CONFIDENCE MODULE

Module Inf. per Sample (ms) Throughput
(samples/s)

CNN Classifier 0.5215 1,917
DQN Confidence Module 0.0241 41,500

E. Generalization to another dataset

We evaluated our approach on the UNSW-NB15 dataset
[11], which is more volatile comapred to CICIDS-2017. Two
experimental strategies were explored: (1) treating selected
UNSW attack classes as zero-day inputs for our CICIDS-
trained IDS, and (2) applying the entire CNN+DQN frame-
work directly on the UNSW dataset to assess its standalone
performance.

1) Unique classes in UNSW as zero-day attack for CICIDS-
Based IDS: .

To evaluate the generalization capability of our CNN+DQN
framework beyond CICIDS-2017, we first identified 15 com-
mon features shared between the CICIDS-2017 and UNSW-
NB15 datasets. These features capture fundamental flow-
level properties such as packet counts (forward/backward),
packet lengths, inter-arrival time statistics, and flow throughput
making them consistent indicators of traffic behavior across
datasets. Because they represent low-level transport and tim-
ing characteristics rather than dataset-specific metadata, they
provide a reliable basis for cross-dataset inference. CNN was
trained on CICIDS-2017 using only these 15 features to ensure
full compatibility with UNSW-NB15 during evaluation.

To assess the model’s ability to detect previously un-
seen attacks, we conducted experiments on a subset of the
UNSW-NB15 dataset. In this evaluation, four attack categories
Fuzzers, Backdoor, Shellcode, and Worms were withheld
from training and relabeled as Unknown to simulate zero-
day threats. These categories were selected because their
traffic signatures differ markedly from the known classes
in CICIDS-2017, categories include: Backdoor traffic often
involves stealthy periodic beaconing, Shellcode produces short
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exploit triggered bursts, Worms generate self-propagating scan
patterns, and Fuzzers exhibit highly variable probing behavior.

The combined evaluation dataset consists of 12,903 samples
with 15 features, including 10,292 known and 1,611 unknown
instances, as summarized in Table VIII. The per-class distri-
bution, including the aggregated unknown category, is shown
in Table IX. The confidence-based prediction performance of
the DQN-IDS on the UNSW test set is reported in Table VII,
demonstrating strong cross-dataset robustness with an overall
accuracy of 92.07

TABLE VII
PERFORMANCE ON UNSW DATASET AS UNKNOWN

Metric Value
Total Samples 10,713
Known Samples 9,697
Unknown Samples 1,016
Overall Accuracy 92.07%
Overall F1 Score 95.46%
Correct Known Predictions 8,928 / 9,697
Correct Unknown Predictions 935 / 1,016

TABLE VIII
COMBINED DATASET SUMMARY

Metric Value
Total Samples 12,903
Known Samples 10,292
Unknown Samples (UNSW) 1,611
Number of Features 15

TABLE IX
LABEL COUNTS IN COMBINED CICIDS + UNSW DATASET

Label Count
BENIGN 5,499
DoS Hulk 5,499
PortScan 5,499
DDoS 5,499
DoS GoldenEye 5,499
FTP-Patator 5,499
SSH-Patator 5,499
DoS slowloris 5,499
DoS Slowhttptest 5,499
Bot 1,966
Unknown (UNSW) 1,611

2) UNSW Based DQN-IDS Results: .
To further examine the flexibility of our framework, We

applied our complete CNN+DQN intrusion detection frame-
work to the UNSW-NB15 dataset to assess its adaptability
and generalization beyond CICIDS-2017. After tuning the
hyperparameters across multiple configurations, the F1-scores
consistently fell between 0.75 and 0.85. The representative
configuration reported here illustrates that the model converges
reliably and remains stable under multiple training setups. The
performance advantage primarily stems from the DQN’s abil-
ity to learn a non-linear, adaptive decision boundary in the 3-D
confidence space, whereas fixed thresholds impose rigid, axis-
aligned separations that fail to capture the curved geometry
between known and unknown traffic. Our lightweight DQN

adds negligible inference overhead (<1 ms, <100 KB) and
requires no additional labels or threshold adjustments, making
it both practical and more effective than static baselines.
Unlike the cross-dataset experiment (CICIDS → UNSW), this
setup uses UNSW-NB15 exclusively for both training and
testing, providing a direct assessment on a more heterogeneous
dataset. Six classes: Normal, Fuzzers, Generic, Exploits, DoS,
and Reconnaissance were treated as known categories. Their
training distribution was balanced through equal sampling,
yielding 5,999 samples per class (with DoS and Reconnais-
sance naturally smaller after filtering). Additionally, 1,682
samples from the remaining attack types were grouped into
a single Unknown class to simulate zero-day behavior. The
balanced known-class counts used for training are shown in
Table X.

The CNN was trained on 41 statistical flow features re-
shaped for convolutional processing. The final dataset con-
sisted of 25,264 training samples and 7,999 testing samples,
with all NaN or infinite values removed. The resulting con-
fidence distributions showed clear separation: known samples
exhibited consistently higher softmax confidence, while un-
known traffic showed lower (P max) and reduced (P1-P2)
aligning with typical out-of-distribution characteristics.

Performance on the UNSW test set demonstrates that our
DQN-IDS successfully captures these patterns. The CNN
alone achieved 80.78% accuracy and 80.66% F1 on the known
classes. In contrast, the DQN-based classifier, operating purely
on confidence features, reached 74.89% overall accuracy and
82.47% F1, correctly identifying 1,140 out of 1,283 unknown
samples. These test-set results are presented in Table XI.

Overall, UNSW-NB15 remains challenging due to its high
variability and noise, which often stress test statistical feature
based IDS models. Despite this, our CNN+DQN framework
adapts effectively, learns meaningful decision boundaries, and
demonstrates strong capability to detect zero-day traffic pat-
terns.

TABLE X
KNOWN-CLASS AND UNKNOWN COMBINED SET COUNTS FOR

UNSW-BASED DQN-IDS

Label Count
Normal 5,999
Fuzzers 5,999
Generic 5,999
Exploits 5,999
DoS 4,089
Reconnaissance 3,496
Unknown 1,682

V. CONCLUSION

Our results highlight the effectiveness of combining CNN-
based feature extraction with DQN-driven confidence analysis
for open-set intrusion detection. The CNN model achieves
high accuracy and confidence in known traffic, while the
integration of a DQN trained in softmax-derived uncertainty
features enables the hybrid system to generalize effectively to
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TABLE XI
UNSW-ONLY CNN+DQN TEST SET CONFIDENCE-BASED

PERFORMANCE

Metric Value
Total Samples 7,201
Known Samples 5,918
Unknown Samples 1,283
Overall Accuracy 74.89%
Overall F1 Score 82.47%
Correct Known Predictions 4,253 / 5,918
Correct Unknown Predictions 1,140 / 1,283

previously unseen traffic. On a test set of 10,016 samples held-
out, the CNN+DQN pipeline achieved an overall precision
of 96.27% and a binary F1-score of 97.83%. The system
correctly identified 9,465 out of 9,667 known samples and
1,384 out of 1,602 unknown samples. Most known attack
classes were recognized with 98% accuracy. In contrast, be-
nign traffic exhibited lower accuracy (77.51%), which may
be attributed to similarities between certain benign patterns
and low-confidence attack traffic, leading to conservative un-
known classifications. By learning to distinguish known and
unknown traffic without relying on hard-coded thresholds, the
DQN introduces adaptability and robustness into the decision
process. This flexibility is particularly valuable in real-world
environments where network conditions and attack behaviors
evolve over time. In general, the proposed framework based on
confidence-driven reinforcement learning represents a practical
step towards more resilient and deployable intrusion detection
systems capable of addressing zero-day threats.

TABLE XII
CNN + DQN ACCURACY ON KNOWN TEST SAMPLES CICIDS-2017

Class ID Samples Correct Accuracy (%)
0 867 672 77.51
1 882 880 99.77
2 880 864 98.18
3 898 882 98.22
4 868 846 97.47
5 884 870 98.42
6 876 866 98.86
7 880 872 99.09
8 871 859 98.62
9 328 326 99.39

A. Possible Limitations

The proposed framework relies on the quality of the
confidence estimates produced by the underlying CNN. Al-
though unknown or zero-day samples generally exhibit lower
confidence or higher uncertainty, deep neural networks may
occasionally assign high confidence to unseen inputs. In such
cases, the ability of the DQN to distinguish unknown traffic
can be reduced, reflecting a known limitation of confidence-
based detection approaches.

Additionally, the tradeoff between detecting unknown at-
tacks and maintaining high accuracy in benign traffic may lead
to increased false positives in certain scenarios. In practical
deployments, this can be mitigated by prioritizing alerts,

secondary verification mechanisms. Despite these limitations,
the proposed approach provides a flexible and threshold-free
mechanism for open-set intrusion detection.

B. Future Work

The proposed framework can be extended in several promis-
ing directions. First, evaluating the CNN-DQN pipeline across
diverse intrusion detection datasets would help assess its
generalizability. Further, analyzing and categorizing unknown
traffic into groups of similar values could reveal whether
it represents new type novel attacks or benign variations,
enabling dynamic updates to the model.

To enhance the decision making process, the DQN com-
ponent could work with richer input features such as raw
CNN logits or components based on logits like energy-based
confidence scores, offering a more nuanced understanding of
uncertainty than softmax alone. Lastly, real-time deployment
should be explored by integrating the system with live traffic
monitoring tools, to detect the traffic in live environment.
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