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Abstract—With the advance of IoT technology, embedded
systems have become omnipresent in everyday life, taking on ever
more security sensitive tasks. Because of this, the security analysis
of embedded firmware has reached unprecedented importance.

At the same time, the need to keep production and operation
costs low imposes strong resource constraints and optimization
pressure on the design of embedded IoT devices. Trade-offs
include smaller firmware images that lack debug symbols, and
lighter housing that is harder to disassemble. Notably, the cheap-
est products tend to receive the least amount of vendor support,
thus making them more vulnerable, while simultaneously being
the least amenable to analysis, thus making it harder for third
parties to assess and address the resulting risks.

Knowing which precise microcontroller unit (MCU) is built
into a particular device allows insight into its memory map,
which is valuable for both static and dynamic analysis of its
firmware. However, while it is usually easy to determine the
manufacturer and model of an IoT appliance through visual
inspection, identifying the MCU at the core of the device is often
only possible after destructive disassembly.

To address this problem, we propose an automatic approach
to derive the MCU of an embedded device from its firmware
image. The approach is based on identifying which addresses the
firmware expects to be accessible and finding the most similar
MCU memory map in a pre-calculated knowledge base. Our
approach does not depend on debug symbols or physical access
to any part of the embedded device.

In our evaluation, this approach correctly identifies the precise
MCU series 57% of the time and finds the most precise available
memory map 44% of the time.

I. INTRODUCTION

The Internet of Things spans devices of various shapes and
functions. A large part of these devices are embedded devices,
i.e., single-board devices featuring a CPU, volatile and non-
volatile memory, as well as multiple peripheral devices. The
board containing the CPU and its peripherals is referred to
as the microcontroller unit (MCU). The software executed on
an embedded device is referred to as its firmware. Embedded
devices typically operate under strong resource constraints,
which limits the complexity of firmware that they are capable
of executing.
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Fig. 1. MCU inscriptions found in disassembled embedded devices.

Fuzz testing firmware both on real [1]-[3] and on emulated
hardware [4]-[6] has by now become an established ap-
proach. Both variants benefit from insights into the firmware’s
hardware-facing interactions, e.g., for harness generation or
crash interpretation.

Embedded firmware typically interacts with peripherals
through their memory-mapped interfaces, i.e., by performing
read and write operations on specific addresses in the system’s
bus address space. Which register of which peripheral can
be found under which address depends on the precise MCU
built into the device. Hence, in order to fully understand (or
emulate) the firmware’s interactions with its hardware, it is
essential to know the MCU’s memory layout. In this paper,
we will refer to the MCU on which the firmware is meant to
be executed as the firmware’s target MCU.

Usually the MCU built into a device can be identified
by reading it off a chip on its main board (see fig. 1).
However, in virtually all cases, reading the chip inscription
requires disassembly beyond the point intended by the device
manufacturer, potentially risking human injury or damage to
the device. This can be particularly difficult for devices with
hard to open housings, such as devices encased in a monolithic
piece of plastic.

Further, physically accessing devices can be impractical
in cases where firmware is being analyzed as a standalone
product. If, for example, one where to attempt a fuzzing
campaign on all firmware published on the website of a
specific device vendor, it would be costly and difficult to
acquire every single device for which said vendor is providing
firmware. In such cases, a method to automatically detect the
target MCU of a firmware binary without requiring any access
to the hardware could help reduce cost and manual effort.

The goal of this paper is to determine whether the target
MCU of a firmware image can be reliably identified without
physical access to the device. To this end, we implement and



evaluate a fully automatic approach to match a firmware image
to its target MCU using only static analysis and a knowledge
base pre-calculated using public information.

Our approach only requires the firmware to be executable
on its target architecture. In particular, it does not rely on the
firmware to include metadata or debug symbols or for it to be
built using any specific library.

The contributions of this paper are

« a novel method for identifying the target MCU of mono-
lithic firmware with minimal manual effort,

« a pre-calculated machine-readable MCU knowledge base
enabling our method including tools to rebuild the knowl-
edge base from current sources, and

« an evaluation of the efficacy of our method on a ground
truth of 42 firmware images.

The remainder of this paper is structured as follows. Sec-
tion II introduces background concepts needed to follow this
paper. Section III presents our approach in detail. Section IV
evaluates the efficacy of our approach. Section V discusses
the limitations of our approach as well as future work, and
Section VI concludes this paper.

II. BACKGROUND

In this section, we will introduce related work as well as
all concepts necessary to follow the rest of this paper.

A. Machine-readable hardware descriptions

The most detailed and readily available source of memory
layout information for virtually any MCU is its reference
manual. A typical reference manual is a large PDF document,
often exceeding 1000 pages, containing detailed information
about every peripheral device built into the MCU, including
addresses and semantic meaning of all registers exposed by
these peripheral devices. Although PDF reference manuals are
usually comprehensive and readily available on the websites of
silicon vendors, they are not intended to be machine-readable.

The most common machine-readable hardware description
format is CMSIS System View Description (SVD) [7], an XML-
based file format containing peripheral specifications for use
in, e.g., code generation. The standardization of this format has
resulted in many silicon vendors creating and publishing SVD
files containing their device specifications. The two largest
public SVD repositories known to us are cmsis-svd-datal
and Arm Keil®.

cmsis-svd-data is an independent GitHub repository
aiming to aggregate a comprehensive collection of all freely
available SVD files created by silicon vendors and third parties
alike.

Arm Keil is a microcontroller development kit containing,
among other things, an extensive registry of references to
CMSIS packs provided by silicon vendors, which in turn
contain SVD files.

Uhttps://github.com/cmsis-svd/cmsis-svd-data
Zhttps://www.keil.arm.com/

B. Set similarity

Our approach makes use of a set similarity metric to identify
which microprocessor architecture matches a given firmware
image best.

A set similarity function (also binary similarity) is a func-
tion that defines a real-valued similarity score for any two sets.
The higher the similarity score, the more similar the two sets
are deemed to be.

Empirical evaluation of different similarity functions for
use in software analysis and beyond has been an active topic
of research for at least two decades (e.g. [8]-[12]). For our
approach, we use the Jaccard index
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which is a simple metric widely used for computer code
classification [13]-[19].

JJaccard(517 52) (l)

C. Related work

We conclude this section by highlighting related work.

Identification through network analysis: 10T device classi-
fication based on network analysis has been an active research
topic for years. Meidan et al. [20] first trained an ML model
to classify IoT devices using their generated network traffic
with extremely high precision (> 99% accuracy). Since then,
there have been many works (e.g. [21]-[24]) improving on the
feature extraction algorithms used for network flow classifica-
tion.

A major limiting factor of these classification approaches
is the quality and scope of the datasets used to train their
respective ML models. Jamali et al. [25] investigate the
limitations of existing datasets and introduce a tool facilitating
the collection of new datasets.

Active analysis: While the previously listed approaches
do not interact with the analyzed devices beyond observing
their network traffic, more active approaches exist. Lei et
al. [26] propose an approach to classify IoT devices with web
interfaces using features exposed through said web interfaces.

Individual device identification: Individual device identi-
fication, i.e. distinguishing between multiple devices of the
exact same model, is a related yet distinct problem approached
by, e.g., Sanchez et al. [27]. Such approaches primarily rely on
hardware imperfections influencing measurable characteristics,
such as clock speed and temperature.

To the best of our knowledge, no existing work attempts
MCU architecture identification through static analysis of
firmware. In contrast to all works referenced above, our ap-
proach does not make any use of machine-learning and relies
only on public hardware description repositories and a simple
similarity metric. Further, our focus lies on identifying the
precise MCU architecture rather than producing information
on the device’s function or model.

Framework detection: Van Nielen et al. [28] propose a
method to identify the framework used to develop firmware by
inspecting strings contained in the produced firmware. Rhee
et al. [29] develop a method to determine libraries used in
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Fig. 2. An overview of our apiroach to identify the target MCU of a firmware binary. The dashed box contains pre-processing steps that are only run once:

‘We collect a knowledge base

of memory maps in the form of SVD files. These memory maps are parsed and translated into a knowledge base of shadow

maps containing separate lists of all readable and writable addresses. We then identify the target MCU of a firmware binary @: We decompile and
analyze the binary using Ghidra @ and use the analyzed binary to produce an access map @ containing separate lists of addresses read from and written
to by the binary. Finally, we use a set similarity metric to produce a ranking of shadow maps based on their similarity to the access map.

application software by comparing the application binary to a
knowledge base of known software. Adapting this approach
to detect libraries used in firmware images could present an
alternative to our approach.

Dataset generation: Hauser and Pennekamp [30] tackle the
problem that large parts of device documentation are only
available in PDF reference manuals. To this end, they develop
a method to extract memory maps from PDF tables into SVD
files.

III. METHODOLOGY

As shown in fig. 2, the basic idea behind our approach is to
create an access map of addresses accessed by the firmware
and to find the MCU in our knowledge base most similar to
it. It can be broken down into four steps.

A. Collect machine-readable memory maps from public re-
sources.

Construct a shadow map, i.e., a list of writable addresses
and a list of readable addresses, from each memory map.
Construct an access map, i.e., a list of addresses written to
and a list of addresses read from by the firmware binary.
Rank the constructed shadow maps by their similarity to

the access map.

B.

D.

The first two steps result in a reusable knowledge base and
only need to be done once?. The last steps need to be repeated
for every binary. The remainder of this section will elaborate
on these steps.

A. Collect memory maps

Our approach requires an extensive knowledge base* of
device memory layouts. Building this knowledge base is
essential for the final identification result, since we can only
consider devices known to us when compiling a ranking of

3Given the long and irregular update intervals of cmsis-svd-data, it
should be sufficient to recalculate the knowledge base once a year.

4To avoid confusion, we want to emphasize at this point that the knowledge
bases built in our approach are merely representations of pre-existing data and
not trained ML models of any kind.

Fig. 3. A 1-byte register at 0x5 in the memory map results in the whole
4-byte word at 0x4 being stored in the shadow map.

devices most fitting to the firmware. This first step builds such
a knowledge base from public sources.

As detailed in section II-A, SVD repositories are a good
resource to collect large numbers of machine-readable memory
maps. We build our knowledge base of memory maps by
retrieving all available SVD files from cmsis-svd-data
and Arm Keil.

B. Construct shadow maps

SVD files are created with the purpose of generating func-
tional code, such as linker scripts and C header files. As such,
they contain a large amount of information not relevant to us,
such as names of registers and devices, the semantic meaning
of individual bits, as well as the logical structure of registers
and peripherals. In order to reduce the size of the knowledge
base, we translate each memory map into a simplified shadow
map that only keeps track of accessible addresses.

Sometimes, only parts of a memory-mapped register are
intended to be readable. For example, a transmission register
of a serial interface could have a read-only byte indicating the
remaining space in the transmission buffer and three write-
only bytes used to add data to the transmission buffer. One
way to model such a register in an SVD file could be to define
multiple one-byte registers. For such registers, it is not unusual
for firmware to read all four bytes with a single 32-bit wide
load instruction.

In order to avoid such register accesses not being correctly
detected later, the shadow map intentionally over-approximates
by only storing which 4-byte words contain at least one
readable byte, instead of which precise bytes are readable (cf
fig. 3). Similarly, if at least one byte in a word is writable, the
whole word is stored in the list of writable addresses.



C. Construct access map

The goal of this step is to compile a list of addresses
accessed by the firmware. We identify accessed addresses
using static analysis. In particular, we use Ghidra® to perform
the following steps on the decompiled firmware binary:

1) Consider the whole address space to be executable and

readable but not writable.

2) Run all default analyzers on the program.

3) For every instruction containing a read or write reference
to any address, round the referenced address down to the
next 4-byte word (see fig. 3) and store it in the respective
list in the shadow map.

D. Rank shadow maps

We compare the access map of our firmware image to every
shadow map in our knowledge base. Our aim is to find the
shadow map most similar to our access map, since that shadow
map is most likely to represent the firmware’s target MCU.

Let Ry and W; be the sets of readable and writable
addresses stored in a shadow map and let Ro and W5 be the
sets of read and written addresses stored in the access map.

In order to find the shadow map representing the most likely
target MCU, we rank the shadow maps using their composite
score Opaccard (R1, R2) + Ogaccard (W1, Wa). We consider the
shadow map with the highest score to be the closest match.

IV. EVALUATION

We evaluate the efficacy of our approach by considering the
following research questions.
RQ1: How many MCUs can be distinguished using only
information contained in the collected shadow map
knowledge bases?
How likely is the target MCU of a firmware image to
be represented in our knowledge base?
How often can our approach correctly identify the target
MCU of a firmware image?
How often can our approach correctly identify the target
MCU series of a firmware image?
How does changing the composition of the shadow map
knowledge base affect the accuracy of our approach?

RQ2:
RQ3:
RQ4:

RQ5:

A. Ground truth and experimental setup

In order to evaluate the efficacy of our approach, we need
a ground truth dataset of monolithic firmware images whose
target MCUs are known and represented in our knowledge
base. To answer RQ4, we are also interested in binaries
for which only the target MCU series is represented in the
knowledge base. We build our dataset from two sources:

Scharnowski et al. [5] have created a dataset to evaluate
Fuzzware by compiling the same user application for 10
different target MCUs. These 10 distinct firmware images form
the first part of our dataset.

Edge Impulse is a company developing a machine-learning
platform that makes extensive use of IoT devices. To this end,

Shttps://github.com/NationalSecurity Agency/ghidra

they host 37 repositories on GitHub® containing monolithic
firmware for 43 targets supported by their platform, of which
33 belong to MCU series represented in our knowledge base.
Of these 33 targets, we were able to obtain 32 binaries, which
form the second part of our dataset.

In order to systematically answer the research questions,
we build three shadow map knowledge bases: One from Arm
Keil, one from cmsis-svd-data, and one by combining
both. For brevity, we will refer to these knowledge bases as
Bk, Bc, and By, respectively.

For every firmware image in our dataset, we note its
correct target MCU, check which knowledge bases contain
a representation of the MCU, and rank the shadow maps in
all three knowledge bases using our approach.

B. Results

The complete evaluation results can be found in the artifact
repository referenced in the appendix. We can summarize the
results as follows.

RQ1: How many MCUs can be distinguished using only
information contained in the collected shadow map
knowledge bases?

At the time of evaluation, the knowledge bases Bx and B¢

contain 3082 and 1738 total shadow maps, respectively. These

numbers are bound to change whenever new SVD files are
introduced to the upstream repositories.

In order for two MCUs in a knowledge base to be truly
indistinguishable using only memory accesses performed by
their firmware, their shadow maps must be identical. This is
due to the fact that for any two shadow maps that differ in
at least one address, there exists some possible access map
for which these shadow maps would have different similarity
scores. Hence, we answer RQ1 by evaluating how many MCUs
in our knowledge bases have indistinguishable shadow maps.

The knowledge base Bx contains 1323 equivalence classes
of indistinguishable shadow maps with the largest equivalence
class comprising 163 identical shadow maps.

The knowledge base B¢ contains 736 equivalence classes
of indistinguishable shadow maps with the largest equivalence
class comprising 131 identical shadow maps.

In both cases, the largest equivalence class contains only
shadow maps describing a set of similar MCUs of the Sili-
conLabs series EFR32xG and EFM32PG.

RQ2: How likely is the target MCU of a firmware image to
be represented in our knowledge base?

Together, the Fuzzware dataset and the Edge Impulse repos-
itories contain firmware for 53 target MCUs. Of these targets,
36 (68%) are represented in By and 43 (81%) belong to an
MCU series of which at least one device is represented in By..
RQ3: How often can our approach correctly identify the target

MCU of a firmware image?

Using By, our approach identifies the correct MCU for
15/34 (44%) identifiable’ binaries. The correct target MCU
is contained in the top-3 results for 20/34 (59%) binaries.

Ohttps://github.com/edgeimpulse/
7i.e., binaries whose correct target MCU is represented in By,


https://github.com/NationalSecurityAgency/ghidra
https://github.com/edgeimpulse/

RQ4: How often can our approach correctly identify the target
MCU series of a firmware image?

Using Bp, our approach identifies the correct MCU series
for 24/42 (57%) binaries. The correct MCU series is contained
in the top-3 results for 28/34 (67%) binaries.

RQS5: How does changing the composition of the shadow map
knowledge base affect the accuracy of our approach?

The composition of the knowledge base has a strong effect on
the accuracy of our approach. We can correctly identify more
individual firmware images using the combined knowledge
base By, (15/34) than we can identify using only B¢ (10/26) or
By (10/24). However, since there are images that are correctly
identified using B¢ but incorrectly when using the larger By,
choosing a larger knowledge base does not always yield better
results. We investigate contributing factors by performing a
case study on one such image here.

The access map of the firmware image firmware-
nordic-nrf5340dk.bin lists 5173 accesses of which 368
(7%) are locations within the target MCU’s RAM starting at
address 0x2000 0000. Using Bc, the correct shadow map
nrf5340_application is ranked highest. Notably, none
of the 15747 addresses listed in this shadow map begin with
0x2000 xxxx, indicating that, as is common practice, the
device’s RAM was not included in the original SVD file.

Using By, the incorrect shadow map BAT32G137A is
ranked highest. This shadow map lists 776 addresses, of which
352 (45%) lie between 0x2000 0000 and 0x2000 02cO.
While the listed addresses describe real memory-mapped pe-
ripheral devices, our approach mistakes the RAM accesses of
our firmware image for accesses to these peripheral devices.
The smaller size of the incorrect shadow map further increases
its similarity score, resulting in it being ranked higher than
the correct shadow map when considering the combined
knowledge base B.

V. DISCUSSION

In this section, we discuss the limitations of our approach
and potential for future work.

The accuracy of our approach heavily depends on the quality
of the used knowledge base. In particular, only MCUs that are
represented in the knowledge base can be correctly identified.
On the other hand, adding entries to the knowledge base can
worsen the accuracy. Our case study indicates that references
to global variables can be mistaken for peripheral accesses,
leading to misidentification. It might be possible to improve
the accuracy of our approach by identifying and removing
references to RAM when creating the access map.

When creating access maps, our approach only considers
memory accesses to fixed addresses. A more complete access
map could be obtained using Fuzzware’s [5] dynamic access
modeling. Future work, could also verify the model derived
by Fuzzware using the matched SVD description.

Finally, the CMSIS-SVD standard primarily targets MCUs
based on Arm Cortex-A and Cortex-M architecture families.
Accordingly, the SVD repositories used for building our

knowledge base almost exclusively contain descriptions of
Cortex-based microcontroller units. To mitigate this limitation,
additional sources of memory map descriptions are needed.

VI. CONCLUSION

In this work, we presented a novel method to automatically
identify the target MCU of monolithic IoT firmware by iden-
tifying which MCU described in the knowledge base matches
the firmware’s memory accesses most closely. To this end,
we pre-calculated three different knowledge bases of MCU
architectures from public sources and evaluated their influence
on the accuracy of our method. The evaluation has shown that,
using a knowledge base of sufficient quality, our approach
correctly identifies the MCU series for 57% of evaluated
binaries and finds the most precise available memory map for
44% of the firmware images in our dataset.
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APPENDIX

We make all artifacts needed to reproduce our evalua-
tion, including software, pre-calculated knowledge bases, and
firmware images, as well as detailed notes on all evaluation
steps available in the following GitHub repository:

https://github.com/Fraunhofer-SIT/SDIoTSec2026-ortellius

In particular, the repository contains the knowledge bases of
shadow maps used for our evaluation. These knowledge bases
are accompanied by the software necessary to

« retrieve new SVDs from upstream repositories,
« rebuild the knowledge bases using the new SVDs,
o apply our identification method to any firmware binary

and a knowledge base.


https://github.com/Fraunhofer-SIT/SDIoTSec2026-ortellius
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