
Enabling Research Extensions in Matter
via Custom Clusters

Ravindra Mangar, Jared Chandler, Timothy J. Pierson, David Kotz
Dartmouth College, Hanover, NH

{ravi.gr, jared.d.chandler, timothy.j.pierson, david.f.kotz}@dartmouth.edu

Abstract—Matter is a recent interoperability standard that
aims to address fragmentation in smart homes by providing a
common system for integrating disparate smart-home devices.
As Matter adoption grows, it also creates a shared platform on
which new smart-home mechanisms can be implemented and
evaluated end-to-end across realistic deployments.

However, turning a research idea into a runnable prototype in
a Matter-based deployment is tedious. We address this shortcom-
ing by presenting a practical template for implementing custom
clusters in the open-source Matter SDK and invoking it from
a widely used smart-home controller. Using a running example,
we add a simple cluster that erases sensitive data stored on a
smart device. We view this template as an enabling step for
the community. While Matter’s open reference implementation
provides common ground, the concrete steps required to add
and exercise experimental functionality remain scattered. Our
template and walkthrough consolidate the necessary steps needed
for a reproducible workflow that researchers can adapt for
exploring new security and privacy mechanisms.

I. INTRODUCTION

Since its release in October 2022 by the Connectivity
Standards Alliance (CSA), the Matter protocol [1] has rapidly
gained backing from major smart-home platforms and device
manufacturers as a standard method of providing interoperabil-
ity across device types and across vendors. Matter version 1.0
supported 8 different device types (e.g., smart plugs or smart
air conditioners) while the latest release as of December 2025
expands this catalog to 13 different device types.

Matter has already proven to be a growing commercial
ecosystem. For some device types, millions of devices have
already been deployed. For instance, Midea reports shipping
over 2 million Matter-enabled air conditioners [2].

While Matter’s commercial ecosystem has expanded, it
remains difficult for researchers to leverage the protocol
for exploring new functionality. The published research to
date has primarily emphasized measurement, interoperability
studies, and ecosystem characterization, rather than exploring
extensions to the Matter ecosystem for new functionality or
new device types. Many smart-home research ideas depend
on behaviors that are not yet part of Matter’s standardized

feature set, creating a practical barrier to using Matter as an
experimental medium. Our work aims to alleviate the burden
from researchers from having to scour code repositories and
documentation and introduces a reproducible template for
prototyping new features in both the device and controller [3].

In this paper, we make two important contributions:
• A guide for implementing new functionality on any

Matter-compliant device which has a mechanism to allow
firmware to be reflashed (e.g., development devices).

• A guide for invoking such new functionality from a
smart-home controller.

Motivating Example: To motivate and illustrate our con-
tributions, this paper uses a running example. Consider a
researcher interested in the important task of sanitizing a
smart-home device for reasons of security and privacy, that
is, to erase any sensitive information stored within the device
(e.g., identity of the home residents, their personal health
information, or keys and certificates allowing access to cloud
resources). The Matter standard does not include an “erase
all sensitive data” functionality, so the researcher wishes to
add this new functionality to the open-source Matter SDK
and experiment with this function by flashing the customized
Matter implementation on a Matter-complaint smart device.

To demonstrate how to extend Matter to include this erasure
functionality, we use a smart microwave oven as an example.
The oven may contain sensitive information, such as network
credentials, that should be erased if the device is sold or
recycled. The new Matter extension provides code to delete
this sensitive information and supplies a standardized way for
applications to invoke it.

II. BACKGROUND

In this section we introduce Matter-specific terminology,
used in the remainder of the paper, and illustrate their or-
ganization in Figure 1.

• Node: A single Matter device such as a light bulb, smart
lock, or in our example, a microwave oven.

• Cluster:1 A cluster specifies a group of related commands
and attributes. In the Matter data model, a node exposes
one or more endpoints, and each endpoint hosts instances
of one or more clusters; thus, commands are invoked

1Matter’s data model reuses the ‘cluster’ abstraction popularized by the
Zigbee wireless specification.

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2026
23 February 2026, San Diego, CA, USA
ISBN 978-1-970672-01-5
https://dx.doi.org/10.14722/sdiotsec.2026.23064
www.ndss-symposium.org
© Internet Society

on a particular cluster. Clusters are the primary unit of
interoperability. They are also the unit a researcher/de-
veloper will most often use when designing custom
functionality. In our example, we create a Sanitize
cluster which includes functions to do the actual data
erasure (commands).

• Endpoint: A logical interface within a node that groups a
set of clusters (features). For example, an electrical power
strip might have multiple outlets, and each outlet has a
unique endpoint.

• Attribute: A piece of information the device can report
when requested (like a status or sensor value), or a
configuration parameter that can be set when requested.
For example, a thermostat will have an attribute for the
current temperature; the microwave oven in Figure 1 has
an attribute CookTime.

• Command: A request message that asks the device to
perform an action. Like attributes, commands have a
defined data format (a typed payload with specific fields),
and may return a typed response. An example of a
command is StartCooking for a microwave oven.

• Controller: An application (most commonly, a smart-
phone app) that commissions and controls Matter devices.
The controller uses the Matter protocol to contact device
endpoints, issue commands, and read or set attributes.

III. CREATING NEW CLUSTER

Continuing with our running example, we introduce a new
cluster which defines one new command. Specifically, we
add a custom cluster (Sanitize) that exposes a single
command (SanitizeDevice). When a controller invokes
the SanitizeDevice command, the device erases sensitive
data stored locally and returns a success/failure status.

Importantly, the addition of this new cluster and command
(or in other cases, multiple commands and attributes) does not
alter other device functionality. As such, the device can still be
commissioned and operated normally after the addition – in-
cluding any Matter controllers that are unaware of the extended
functionality. We provide our implementation as a template
that researchers can reference when implementing their own
custom clusters. We plan to open-source this template to
facilitate reuse.

Although the new cluster and encompassing command we
build follows Matter’s data model and can be commissioned
and exercised like a Matter node, we intentionally wrote
our template for a research/testing audience using the open-
source Matter SDK and reference implementation rather than
a product-certification pipeline.2 The key distinction is that our
template produces an experimental research prototype rather
than a CSA-certified commercial device; as a result some
controllers may surface warning messages indicating the lack
of certification.

2We used v1.5.0.1 of the Matter reference implementation found at
github.com/project-chip/connectedhomeip

Cluster: Commissioning

Cmd: SetCookTime

Attr: CookTime

Endpoint 0

Cluster: AccessControl

Cluster: OvenControl

Cluster: Sanitize

Cmd: SanitizeDevice

Endpoint 1

Node

Matter
Administration
Features

Existing
Device
Features

New
Feature

Device: Microwave Oven

Cmd: StartCooking

Fig. 1: Diagram of Matter’s data model for a Microwave Oven.
Dashed gray line indicates new functionality to be added.
Adapted from [4].

A. On the Device

Here we outline the steps required to define a new cluster,
implement its server-side behavior 3 (the code running on the
device that receives requests from a controller, i.e., the logic
for the command), and expose it on an endpoint.

We use the Linux microwave-oven-app example from
the Matter SDK to embed our new functionality (i.e., the
Sanitize cluster). While it runs on a generic Linux system
(such as a Raspberry Pi), it appears logically to controllers as
a smart microwave oven.

Step One: Define the Cluster: First, we extend the Matter
SDK’s data model to include a new Sanitize cluster. This
extension signifies to the SDK the commands and attributes
associated with our new cluster as well as the permissible
data types. Concretely, we add a new cluster definition under
src/app/zap-templates/zcl/data-model/chip/
so that the cluster is recognized by the SDK and can be
included as part of an endpoint. A snippet of our cluster
definition is shown in Listing 1. After rebuilding the SDK
is now aware of the new cluster and its capabilities.

Step Two: Implement the cluster on the device: The next
step is to add the server-side code that handles the new
command. In our case, the device must perform three steps:
(1) receive a SanitizeDevice request, (2) erase whatever
data the researcher designates as sensitive, (3) send a clear
“success/failure” response back to the controller.

3Here, server-side refers to the device-side; we use this terminology for
consistency with Zigbee’s cluster model.

https://github.com/project-chip/connectedhomeip

Listing 1: Matter cluster definition fragment defining
the mandatory SanitizeDevice command in
SANITIZE_CLUSTER.
<define>SANITIZE_CLUSTER</define>
<description>Cluster to remove sensitive
data from device.

</description>
<!-- Commands -->
<command source="client" code="0x00" name="
SanitizeDevice" optional="false">
<description>
Deletes sensitive data.

</description>
<access op="invoke" privilege="manage"/>
<mandatoryConform/>

</command>

The cluster is implemented across the following files:
src/app/clusters/

sanitize-server/
BUILD.gn
sanitize-server.h
sanitize-server.cpp

BUILD.gn is the build file that tells the project’s build
system to include this new Sanitize cluster in the firmware,
which source files to compile and other parts of Matter it
requires (for example Matter provides its own implementation
of some cryptographic functions). It can also declare any
extra C/C++ libraries this code needs (for example, the Boost
library). The file sanitize-server.h is a header that
lists the functions this cluster code provides; for example, a
function to set it up when the device starts and a function
that runs when the controller sends the SanitizeDevice
command. The file sanitize-server.cpp provides the
code for the functions that implement the new command.
When a controller invokes SanitizeDevice, this code
triggers a routine to erase whatever data is deemed sensitive
by the programmer and returns if the operation was a success
or failure (see Listing 2).

Step Three: Attach the new cluster: We next expose the
cluster on a specific endpoint so the device advertises it and
routes requests to the corresponding handler. This is done
using the Zigbee Cluster Library (ZCL) tool as shown in
Figure 2.

Concretely, we update the device’s endpoint config-
uration to include the Sanitize cluster on a spe-
cific endpoint so incoming commands get handled by
sanitize-server.cpp, as shown in Listing 2.

B. On the Controller
To exercise our custom cluster from a real smart-home

ecosystem, we use Home Assistant [5], a popular open-source
platform with native Matter support.4 We first commission
the modified device into Home Assistant as usual [8]. Af-
ter commissioning, Home Assistant automatically discovers

4We use Home Assistant Core v2025.12.3 [6] with Python Matter Server
v8.1.1 [7]

Listing 2: Command Handler that does the erasure of sensitive
data.
void SanitizeCluster::InvokeCommand(

HandlerContext & ctxt)
{

switch (ctxt.mRequestPath.mCommandId)
{
case Commands::SanitizeDevice::Id:

HandleCommand<Commands::
SanitizeDevices::DecodableType>(

ctxt, [](HandlerContext & ctx,
const auto &) {

const EndpointId ep = ctx.
mRequestPath.mEndpointId;

CHIP_ERROR err = chip::
DeviceLayer::PlatformMgr().ScheduleWork(

DoSanitizeDevice,
static_cast<intptr_t>(ep));

ctx.mCommandHandler.AddStatus(
ctx.mRequestPath, (err ==

CHIP_NO_ERROR) ? Status::Success : Status
::Failure);

});
return;

default:
ctxt.mCommandHandler.AddStatus(ctxt.

mRequestPath, Status::UnsupportedCommand);
return;

}
}

Fig. 2: Once the Matter SDK is aware of the new cluster,
through our earlier changes to the data model, we can add the
new cluster to a device using the Zigbee Cluster Library (ZCL)
tool. The change is applied via the GUI by updating build
configuration files, so rebuilding the firmware incorporates it
without any code edits. This makes the cluster easily reusable
across Matter devices by enabling it through configuration
rather than device-specific source changes.

Listing 3: Telling the controller of our new cluster. Values for
the IDs come from the data model XML.
@dataclass
class SanitizeCluster(Cluster,

CustomClusterMixin):
"""New Sanitize Cluster"""
class Commands:

"""Commands for the Sanitize cluster.
We only define the one to erase data"""

@dataclass """Erase Sensitive Data""
class SanitizeDevice(ClusterCommand):

cluster_id: ClassVar[int] =
SANITIZE_CLUSTER_ID

command_id: ClassVar[int] = 0x0000

#This is a client to server
command.

is_client: ClassVar[bool] = True
Response just has a status
response_type: ClassVar = None

@ChipUtility.classproperty
def descriptor(cls) ->

ClusterObjectDescriptor:
return ClusterObjectDescriptor

(Fields=[])

the device’s endpoints and standard clusters, but it will not
understand our new experimental Sanitize cluster un-
less we add explicit support for it. In practice, this re-
quires small changes across Home Assistant’s Matter stack:
we (1) register our custom cluster in the Python Matter
Server backend and (2) add a custom component under
config/custom_components/ that exposes the com-
mand as a Home Assistant service (so it can be triggered from
automations and displayed as a dashboard button).

Step One: Modify Home Assistant’s Matter Integration:
Home Assistant’s Matter support has two parts. Home
Assistant Core provides the UI, automations and the
commissioning flow, while Python Matter Server is
the backend service that is the logical Matter controller
and sends commands to devices. To make Home Assistant
aware of our custom Sanitize cluster, we update Python
Matter Server’s list of custom clusters by editing
python-matter-server/matter_server/common/
custom_clusters.py to register the new cluster and its
associated commands.

Step Two: Add the Integration: To expose our
custom SanitizeDevice command to Home
Assistant, we implement a custom integration under
config/custom_components and the associated files
as shown below.
config/custom_components

matter_sanitize/
manifest.json
__init__.py
services.yaml

The integration is a new directory consisting of:

Listing 4: Home Assistant forwards the request by invoking
the command defined in Listing 3.
async def handle(call):

node = node_from_ha_device_id(hass, call.
data["device_id"])
#Invoke SanitizeDevice cmd
await get_matter(hass).matter_client.
send_device_command(

node_id=node.node_id,
endpoint_id=call.data.get("endpoint_id

", 1),
cluster_id=0xFFF1FC30,
command_id=0x0000,
payload={},

)

Fig. 3: Here we see our simulated microwave oven in Home
Assistant with an accompanying button to remove sensitive
data from the device.

(1) a manifest.json that declares metadata, (2) an
__init__.py that registers a Home Assistant ser-
vice (matter_sanitize.sanitize_device) and for-
wards requests to the Python Matter Server, and (3) a
services.yaml that describes the service schema so it
appears in the UI and can be bound to a dashboard button.
The contents of manifest.json and services.yaml
follow documented Home Assistant practices to add a cus-
tom integration [9]; unique to our case is the addition of a
matter_sanitize domain. Listing 4 shows the contents
of __init__.py.

Step Three: Create the UI element: We add a button
to the Home Assistant dashboard (as shown in Figure 3)
and configure its action to invoke backend service [10],
[11]. The only project-specific detail is the service we ex-
pose and call (matter_sanitize.sanitize_device),
which forwards the request and ultimately invokes our new
SanitizeDevice command.

IV. RELATED WORK

Prior work has surveyed Matter’s architecture adoption chal-
lenges, helping motivate research opportunities [12]. Mangar
and Zegeye et al. complement this perspective by building
a practical hardware testbed that enables deploying and ex-
ercising existing Matter applications end-to-end [13], [14],
[15]. In security research, a growing body of work motivates
the need for rapid prototyping and evaluation; Wang et al.
identify vulnerabilities and attack scenarios that emerge from
real smart-home Matter deployments and integrations [16].
These efforts motivate and enable experimentation, but they
do not provide a reproducible workflow for implementing and
invoking new experimental functionality within Matter. Our
work fills this gap with an end-to-end template spanning both
the device and a real controller.

V. SUMMARY

We present instructions, and a template example, for adding
a custom cluster in the reference implementation of Matter and
invoking it from a real smart-home controller. Full instructions
and code can be found at https://github.com/SPLICE-project
/matter-custom-clusters.

ACKNOWLEDGEMENTS

This research results from the SPLICE research program,
supported by a collaborative award from the SaTC Frontiers
program at the National Science Foundation under award
number CNS-1955805. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the sponsors. Any mention of specific companies
or products does not imply any endorsement by the authors,
by their employers, or by the sponsors.

REFERENCES

[1] Connectivity Standards Alliance. (2023, Oct.) Matter 1.2 arrives with
nine new device types & improvements across the board. https://csa-i
ot.org/newsroom/matter-1-2-arrives-with-nine-new-device-types-impro
vements-across-the-board/. Accessed Dec. 18, 2025.

[2] ——. Midea pioneering Matter adoption in smart appliances. Online at
https://csa-iot.org/newsroom/midea-pioneering-matter-adoption-in-sma
rt-appliances/.

[3] R. Mangar, J. Chandler, T. J. Pierson, and D. Kotz, “Enabling
Research Extensions in Matter via Custom Clusters,” Online at
https://github.com/SPLICE-project/matter-custom-clusters.

[4] Google, “The device data model,” https://developers.home.google.com
/matter/primer/device-data-model, Apr. 2023, accessed Dec. 18, 2025.

[5] Home Assistant, “Home assistant,” https://www.home-assistant.io/,
accessed Dec. 18, 2025.

[6] Home Assistant Core, “Home Assistant Core release 2025.12.3,” https:
//github.com/home-assistant/core/releases/tag/2025.12.3, Dec. 2025,
release 2025.12.3 Accessed Dec. 18, 2025.

[7] Python Matter Server, “python-matter-server release 8.1.1,” https://gi
thub.com/matter- js/python-matter-server, Sep. 2025, release 8.1.1.
Accessed Dec. 18, 2025.

[8] Home Assistant Docs, “Matter,” https://www.home-assistant.io/integrat
ions/matter/, 2025, accessed Dec. 18, 2025.

[9] ——, “Integration file structure,” https://developers.home-assistant.io/
docs/creating integration file structure/, accessed Dec. 18, 2025.

[10] ——, “Actions,” https://www.home-assistant.io/dashboards/actions/,
accessed Dec. 18, 2025.

[11] ——, “Button card,” https://www.home-assistant.io/dashboards/button/,
accessed Dec. 18, 2025.

[12] D. Belli, P. Barsocchi, and F. Palumbo, “Connectivity Standards Alliance
Matter: State of the art and opportunities,” Internet of Things, vol. 25,
p. 101005, 2024.

[13] R. Mangar, J. Qian, W. Zegeye, M. Khanafer, A. AlRabah, B. Civjan,
S. Sundram, S. Yuan, C. Gunter, K. Kornegay, T. J. Pierson, and
D. Kotz, “Designing and Evaluating a Testbed for the Matter Protocol:
Insights into User Experience,” in Proceedings of the NDSS Workshop on
Security and Privacy in Standardized IoT (SDIoTSec). NDSS, February
2024.

[14] W. Zegeye, A. Jemal, and K. Kornegay, “Connected smart home over
Matter protocol,” in Proceedings of the International Conference on
Consumer Electronics (ICCE). IEEE, 2023, pp. 1–7.

[15] W. K. Zegeye, R. Mangar, J. Qian, V. Morris, M. Khanafer, K. Kornegay,
T. J. Pierson, and D. Kotz, “Comparing smart-home devices that use
the Matter protocol,” in Proceedings of the International Workshop on
Intelligent Communication Network Technologies (ICNET’25). IEEE,
January 2025, DOI 10.1109/CCNC54725.2025.10976049.

[16] H. Wang, Y. Liu, Y. Fang, Z. Jin, Q. Liu, and L. Xing, “WIP:
Security vulnerabilities and attack scenarios in smart home with Matter,”
in Proceedings of the NDSS Workshop on Security and Privacy in
Standardized IoT (SDIoTSec). NDSS, February 2024, DOI 10.147
22/sdiotsec.2024.23048.

https://github.com/SPLICE-project/matter-custom-clusters
https://github.com/SPLICE-project/matter-custom-clusters
https://csa-iot.org/newsroom/matter-1-2-arrives-with-nine-new-device-types-improvements-across-the-board/
https://csa-iot.org/newsroom/matter-1-2-arrives-with-nine-new-device-types-improvements-across-the-board/
https://csa-iot.org/newsroom/matter-1-2-arrives-with-nine-new-device-types-improvements-across-the-board/
https://csa-iot.org/newsroom/midea-pioneering-matter-adoption-in-smart-appliances/
https://csa-iot.org/newsroom/midea-pioneering-matter-adoption-in-smart-appliances/
https://github.com/SPLICE-project/matter-custom-clusters
https://developers.home.google.com/matter/primer/device-data-model
https://developers.home.google.com/matter/primer/device-data-model
https://www.home-assistant.io/
https://github.com/home-assistant/core/releases/tag/2025.12.3
https://github.com/home-assistant/core/releases/tag/2025.12.3
https://github.com/matter-js/python-matter-server
https://github.com/matter-js/python-matter-server
https://www.home-assistant.io/integrations/matter/
https://www.home-assistant.io/integrations/matter/
https://developers.home-assistant.io/docs/creating_integration_file_structure/
https://developers.home-assistant.io/docs/creating_integration_file_structure/
https://www.home-assistant.io/dashboards/actions/
https://www.home-assistant.io/dashboards/button/
http://dx.doi.org/10.1109/CCNC54725.2025.10976049
http://dx.doi.org/10.14722/sdiotsec.2024.23048
http://dx.doi.org/10.14722/sdiotsec.2024.23048

	Introduction
	Background
	Creating New Cluster
	On the Device
	On the Controller

	Related work
	Summary
	References

