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Abstract—Evidence from digital devices in general, and Inter-
net of Things (IoT) and embedded devices in particular, plays
an increasing role in modern investigations. Yet their diversity in
hardware and software encumbers their analysis and analysis
results appear fragmented and hard to assess. Investigators,
therefore, face the challenge of finding and interpreting relevant
digital evidence stored on these devices. In order to standardize
the forensic analysis of digital devices and structure research
results, we present the User—Device Interaction Model (UDIM),
a device-centric formal model that is based on the types of
interaction between a device, users, and other devices across
interaction types and locations. By integrating the analysis
results of 42 IoT devices from the literature, we show how
UDIM supports standardized analysis, and helps law enforcement
agencies prioritize resources during seizures. Furthermore, the
model can be used to assess the coverage of forensic examinations,
to ensure thoroughness and completeness of investigations.

I. INTRODUCTION

As more and more smart objects populate our personal envi-
ronment, an increasing amount of interesting digital evidence
may be found on such devices. As a result, an ever increasing
stream of device analyses are performed by digital forensic re-
searchers, resulting in an abundance of scientific publications,
white papers and blog posts. For forensic practitioners, this
body of knowledge is a treasure chest, as it relieves them of
laborious reverse engineering in their daily work.

When looking at previous work on the forensic analysis
of various Internet-of-Things (IoT) and embedded devices,
we observe that most examined devices differ substantially
in terms of their recovered forensic artifacts. This is unsur-
prising given the breadth of form factors, use cases, and
manufacturers. For example, a smart speaker [1] cannot be
expected to contain exactly the same forensic artifacts as
a washing machine [2] or a kitchen appliance [3], and a
smart watch [4] will store different data than a smart light
bulb [5] or a smart refrigerator [6]. The lack of a widely
accepted analysis methodology for embedded devices further
complicates comparisons of findings across researchers for
the same device type. Without standardized approaches, it
becomes difficult to determine the coverage level of such

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/sdiotsec.2026.23050
www.ndss-symposium.org

an examination, which makes it challenging to evaluate the
thoroughness and comparability of research results.

This raises two practical questions: How can diverse and
heterogeneous embedded device analyses be harmonized? And
how can we make better use of insights from such analyses
in digital investigations?

The structuring and comparison of artifacts from different
IoT devices with respect to their source (e.g., device itself,
companion device, cloud server) is still very rough and does
not directly help investigators when they are seeking answers
to concrete investigative questions. For example, seeking traces
of presence at the crime scene would involve querying all three
of the above sources. Similarly, the generic model of cognitive
maps by Gruber et al. [7] offers too little structure to be able
to compare concrete device analyses.

In this paper, we propose a new perspective on unifying
generality with concreteness for IoT device analyses based
on interactions at system boundaries, where we combine the
location of traces with the implications of their existence. For
example, traces of direct user interactions with devices at a
crime scene indicate a person’s presence. Therefore, focusing
on interactions at system boundaries also helps to structure
analysis results so that relevant traces can be found more
easily and quickly. Systematically enumerating a device’s
interaction possibilities structures both research results and
device analysis.

Conceptually, focusing on interactions means considering
not only digital traces but also the activities that produce
them. This corresponds to the observation made by Cook et
al. [8] that forensic propositions appear at three abstraction
levels: Offense level (legal questions about whether an offense
occurred and who is responsible), Source level (concrete traces
like fingerprints or timestamps), and Activity level (concrete
activity descriptions). Interactions in our model correspond
to Activity-level statements, which explain their usefulness in
linking the Offense and Source levels.

A. Research Questions & Contributions
We aim to answer the following research questions:

RQ1 How can the communication of a digital device with
other devices and users be described completely and
formally in a model-based manner?

RQ2 Can the model help standardize forensic investigations
of digital devices, and does it impact the work of law
enforcement agencies?



Overall, the contributions of this paper in answering the
research questions are as follows:

o We present the User-Device Interaction Model (UDIM),
a model of user-device communication and interaction,
which can be used to describe a device’s interactions
with its interaction participants in different locations and
classify them according to their possible existence and
found forensic artifacts.

« We show how the model can support a standardized and
comprehensive forensic examination of an IoT or embed-
ded device and thereby also the work of law enforcement
agencies with respect to the seizure of relevant devices.

e We created an example knowledge base by applying
UDIM on 24 data sources about the possible interactions
of 42 different devices with their interaction participants.

II. RELATED WORK

As mentioned above, many publications reporting on con-
crete insights from actual technical analyses of specific devices
exist, some very detailed, others very pragmatic with varying
depth. In contrast, only few previous works have focused on
the harmonization and classification of these insights.

Most artifact classification methodologies draw from ap-
proaches originally devised for physical evidence [9], [10].
For example, Cook et al. [11] proposed a model that is related
to expert witness work. The authors divided this process into
three phases: customer requirement, case pre-assessment and
service delivery. The forensic examination occurs in the third
phase, where final statements are formulated based on prepared
investigation questions and a predefined strategy.

Bouchaud et al. [12] used this approach to abstract from
concrete analyses of specific IoT devices and rather focus
on the types of evidence that can be recovered from them.
For example, they classified evidence as either coming from
internal or external networks. These insights were reinforced
by findings of Li et al. [1] and Servida et al. [5], who
suggested that a forensic analysis should examine not only the
actual IoT devices but also the companion apps and networks.
Furthermore, Li et al. [1] classified IoT devices as fools,
targets, or witnesses in the context of a criminal case.

Recently, attempts have been made to harmonize insights
from specific IoT sub-areas. For example, Hammer et al. [13]
presented a taxonomy for fitness trackers, smart watches, and
other wearables and a model for the forensic investigation
of fitness trackers. However, whether their model generalizes
to all embedded devices remains unclear. In contrast, Gruber
et al. [7] proposed cognitive maps based on a node-link
representation to capture phenomenon-specific knowledge in
cybercrime investigations. These maps guide the search for
relevant digital evidence and thereby allow to “map” general
process models to specific cases. Due to its simplicity, the
approach is very expressive, but the creation of useful cog-
nitive maps requires a lot of effort. Gruber and Freiling [14]
also addressed the question of finding relevant digital evidence
based on case-specific hypotheses, but within digital models
that need to be created (i.e., mined) first.

In addition to such cognitive maps, network-based maps
can also be used by investigators for forensic analysis and
describing IoT environments. Tournier et al. [15] described a
graph-based model for IoT networks and addressed protocols
such as ZigBee, Bluetooth, Wi-Fi, and others. In their mod-
eling approach, they distinguish between different graphical
representations of the same IoT network based on network lay-
ers (data link, network, transport, and application). Similarly,
Wang et al. [16] employed graph-based representations with
their ProvThings approach, creating provenance graphs from
the Samsung SmartThings platform to explain system activi-
ties and trace malicious behavior during attacks by utilizing
companion apps and device APIs. Beyond provenance-based
approaches to behavior monitoring, spatial categorization can
also assist forensic analysis in IoT environments. Almogbil et
al. [17] classified attacks on smarthome environments based on
the locality of the attack. They distinguish between physical,
nearby, and remote devices and thereby adopt forensic analysis
approaches that examine the device, its firmware, companion
devices on the local network, and remote cloud servers for
forensic artifacts.

Regarding concrete analysis procedures, Eichhorn and Freil-
ing [3] performed a rigorous analysis of a kitchen appliance
based on systematic test data generation on an identical
reference device to analyse an unknown IoT device. The
authors defined minimal actions as state transitions in a
state machine [18]-[20] and then compared successive states
using differential forensic analysis [21] to identify forensically
relevant artifacts. While their analysis method is rather general,
Eichhorn and Freiling [3] do not address the question of how
to compare the types of artifacts resulting from their method.

III. USER-DEVICE INTERACTION MODEL

The User-Device Interaction Model (UDIM) formalizes the
ways in which IoT devices can interact with users, their
environment and other technical infrastructures (other devices
or cloud services). The model is device-centric, i.e., the outset
of any deliberation is some specific IoT device itself that is
relevant to a criminal investigation.

A general overview of the model is depicted in Figure 1,
which shows the device in the center targets of possible
interactions around it ordered by “interaction distance”, i.e.,
direct proximity, internal networks and external networks. The
following sections describe UDIM in more detail: We first give
some basic definitions (Section III-A) before showcasing its
real-world usage based on an exemplary device (Section I11-B).

A. Model Definition and Description

UDIM is an idealized representational model [22] intended
to support forensic analysts as a visualization aid and structural
guide, focusing on the interactions between a device and its
user. At the center of the model is a concrete device.

Definition 1 (UDIM device). A UDIM device (or simply
device) is a computing system that has digital storage to
store (a) usage data and (b) the firmware or operating system
necessary for providing functionality.
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Fig. 1: User-Device Interaction Model with three sections: Proximity («), Internal Network (3), External Network (). Numbers
indicate the respective interaction pairs: User-Device (1), Device-Device (2), Device-Environment (3), Device-Internal (4).

The definition is slightly restrictive in that it focuses on de-
vices that potentially store relevant digital evidence. Electronic
devices that cannot persistently store usage data, such as an
IR remote control, are uninteresting from a digital forensics
point of view and therefore excluded from the definition, as
their analysis cannot provide any traces of usage or interaction.

UDIM itself, i.e., the potential interactions of a specific
device, is formalized as a directed graph structure G = (V, E)
where vertices (or nodes) V' are entities between which inter-
actions can take place and directed edges are representations
of potential interactions. As UDIM is constructed around a
specific device d, we demand that at least d € V. And
since we assume that devices have some internal interactions,
we demand that (d,d) € E. The set of graph nodes V
also contains possible users, devices, and environments of the
device as elements.

Definition 2 (environment of a device). The environment of a
device d refers to the spatial surroundings of a device with
which it can interact via acoustic, visual, or other sensor-
measurable means and may include other devices or users.

Note that the environment is device-specific and not nec-
essarily identical for two devices. It is also possible that two
devices have an intersection of each other’s environments. If
the environments overlap, the devices can interact indirectly
via the environment. For example, if one device’s microphone
picks up the speaker output from another device, this would
be an example of indirect interaction.

As shown in Figure 1, UDIM is structured according to the
spatial location of devices and users in relation to the central
device. We distinguish between three types of locations that
differ in spatial/technical distance, i.e., UDIM is based not

only on physical distance but also on the necessary technical
protocols for communication. Distinguishing these location
types is necessary because communication and forensic ar-
tifacts may vary depending on them. The three location types
are (1) direct proximity, (2) the internal network, and (3) the
external network.

The location types are formalized as subgraphs of a UDIM
graph. Formally, a subgraph G’ = (V’/, E’) of a graph G =
(V, E) is a graph such that V' C V and E’ C FE such that E’
only contains those edges from E that refer to nodes in V.

We now are ready to define how UDIM is formed around
a specific device and its environment.

Definition 3 (UDIM). The UDIM for device d and environ-
ment e is a graph G = (V,E) such that d € V and e € V,
(d,d) € E. G consists of three subgraphs G, Gz and G of
G defined as follows:

o The proximity subgraph G, comprises all graph nodes v
that are in the same environment e of d, including d.

o The internal network subgraph Gg includes all graph
nodes v located in the same network as the device d,
including d.

o The external network subgraph G includes all graph
nodes v located in another network as the device.

When modeling a real device within UDIM, we understand
the definition of the internal network as not distinguishing
between the protocols used to implement this network. The
network can be implemented using any wired or wireless
communication technology (e.g., Ethernet, Wi-Fi, Bluetooth)
or a combination thereof. Also note that the device is a node
in G, and Gg but not in G.,.
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Fig. 2: Complete Graph Grtme for the Thermomix TM6
device. The subgraphs proximity G, (M), internal network
Gg (B & W), and external network G, (M) are given as
follows: G, = ({e.d,uq},{(d,e),(d,d),{d,ua}}), Gg =
(VaU{r,ug,ps}, EaU{{d,}, {ug, ps}, {1, pp}}), and G, =
({T7 Uy y Pryy €5 10, S}v {{u’y»p’v}7 {p"/a C}v {Ta C}’ {Ta n}a {7“, s}})

B. Example of Model Usage: Thermomix TM6

To illustrate the use of UDIM, we apply the model to an
existing analysis [3] of a specific IoT device: the Vorwerk
Thermomix TM6 [23] is a smart kitchen appliance advertised
as a multi-cooker with cloud and companion app features,
which generated revenues of €1.7 billion in 2024 [24].

The TM6 has a touchscreen and a rotary knob as input
devices for immediate physical user-device interaction. The
rotary knob provides the user with haptic feedback, and
the screen provides visual feedback on the interaction. The
hardware is also equipped with a loudspeaker that allows
the TM6 to interact with the environment. However, this
interaction is not bidirectional, as the TM6 has no sensors to
extract environmental information outside the attached mixing
pot. These observations determine the proximity subgraph G,.

To precisely define G, = (V,, E,), the set of nodes V,
therefore consists of the TM6 itself as device node d and
its environment e together with the user u, in the device’s
proximity. The interactions are depicted in Figure 2 which
shows the visual representation of the overall graph G with
its subgraphs. The proximity subgraph is shown at the top (in
orange) and formally is represented as:

Go = ({evd» U'Oé}v {(dv 6)7 (d, d)? {um d}})

Note that we use the edge notation {z, y} to represent the bidi-
rectional edge between nodes x and y otherwise represented
as two edges (x,y) and (y,x).

We now look at the internal network subgraph of the UDIM
for the TM6. The set of nodes consists of all nodes of the
proximity subgraph, i.e., the device itself, the user u,, and
the environment. Additionally, we add the phone pg running
the companion app and the user ug of this phone (which
may be different from the user u, directly interacting with
d). Since the phone interacts via the network router 7, the
resulting internal network subgraph is as follows:

Gﬁ = (Va U {7“, uﬂvpﬁ}’ E, U {{d’r}v {uﬁ)pﬁ}’ {T7pﬁ}})'

The internal network graph is the union of orange and green
elements shown in Figure 2.

Finally turning to the external network graph, we must
examine the connectivity of the TM6 outside the internal
network. In [3], three notable servers were identified as inter-
action participants in the external network: (1) the Vorwerk
Group’s Cookidoo recipe platform server ¢, (2) an NTP
server n, and (3) a DNS server s. Since the Wi-Fi router r is
accessible from both networks (internal and external), it plays
a special role and must be added to both subgraphs. Also, in
line with the TM6’s range of functions, we need to add a phone
p~ with the companion app and again the user u., interacting
via the external network with d. Hence, the external network
subgraph G., = (V,, E,) is formulated as:

V, ={r,uy,py,c,n,s} and

E, :{{u%p’y}7 {pw 0}7 {T’ C}7 {T’ n}7 {Tv S}}

The complete UDIM graph for the TM6 is shown in
Figure 2 as the combination of subgraphs G, Gz and G
In formal notation, the graph Gmve = (V, E) is expressed as:

V ={e,d, ua,r,ug, pg, Uy, Dy, ¢, M, s} and
E :{(dv e)a (da d)a {d’ ua}v {d,’l“}, {Uﬁ,pﬂ}, {Tap5}7
{uy,py} Ay, et {r, e}, {r,n}, {r,s}}

C. Classes of Interactions

Given the UDIM of a specific device, we now identify
different types of interaction to identify devices involved in the
respective interaction as possible sources of forensic artifacts
of this interaction. We do this by using the standard concept
of a path from graph theory. Given a graph G = (V, E), a
path within G is an ordered non-empty sequence of nodes
(xo,21,22,...,2,) from V such that for all 4, 0 < ¢ < n
holds that (z;,x,4+1) € E. The first node z( of the path is
called the start node and the last node x,, is called the end
node of the path. For a path P, we denote by |P| the length
of the path, i.e., the number of edges contained in P. The
number of edges contained in P corresponds to the number
of nodes listed in the node sequence minus 1. Note that the
length of a path can also be 0.

We use the concept of a path to define what we call an
interaction.

Definition 4 (interaction). A path P = (zq, 21, 22,...,2Tn)
of the graph G with |P| > 0 that contains the device d as
its starting or ending node is called an interaction. The nodes
contained in the interaction are called interaction participants.

We now define different types of interactions. We start
with internal interactions within d. These model interactions
between applications or services within the device.

Definition 5 (internal interaction). The interaction P = (d, d)
of the graph G is called device-internal interaction.

For example, when a web server on the device sends
an email to the local mail server, this is a device-internal
interaction. Figure 3 gives an abstract overview over different
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Fig. 3: Example of different interaction types and paths.

types of interactions and shows a device-internal interaction
P, = {(d,d) with |P;| = 1 schematically.
Other types of interaction depend on the length of the path.

Definition 6 (interaction types). Let P be an interaction
of a UDIM graph G. Depending on the length |P| of the
interaction, we define the following interaction types:

(A) if |[P| =1, then P is a direct interaction,

(B) if |P| =2, then P is a single-step transitive interaction,
(C) if |P| > 2, then P is a multi-step transitive interaction.

The different types of interactions are illustrated in Figure 3.
A direct interaction is the interaction P4 = (uq,d) between
a user u; and the device d. For this special case, we also
use the term “direct user-device interaction”. Direct user-
device interaction is the most basic form of interaction and
can be performed by the user, for example, via the device’s
keyboard or touchscreen. However, since it is not always
possible to interact directly with a device, it may be necessary
to perform the interaction via at least one other device and thus
transitively. Figure 3 shows a typical single-step user-device
interaction Pg = (us,p1,d) between the user uy and device
d via a smartphone p; and the device’s companion app on it.

The distinction between single-step and multi-step transitive
interactions is relevant because these may exhibit different
forensic artifacts, and the interaction itself may leave arti-
facts on multiple devices. A typical multi-step user-device
interaction occurs when the user operates the device via the
companion app, but all device traffic is routed through the
vendor’s cloud server. Hence, two devices are interposed
in the interaction between the user and the actual device.
Figure 3 schematically illustrates such a multi-step transitive
interaction Po = (ug,p2,c¢,d) using the example of user-
device interaction via the device’s companion app on the phone
p2, which is routed to the device d via the vendor cloud c.

D. Example of Model Usage (Continued)

Revisiting the TM6 UDIM graph from Figure 2, in practice,
not all nodes are always relevant for forensic examination in

terms of their forensic artifacts. Thus, it may be legitimate to
simplify the graph under certain circumstances. For instance,
as the TM6 does not establish any other connections in the
local network except for the connection to the Wi-Fi router,
when considering the device’s interactions, and since the
router only forwards the connections, it is possible to consider
whether we should include the Wi-Fi router, or whether it is
negligible for the specific case. Also, the TM6 does not allow
single-step or multi-step transitive user-device interaction via
the companion app. It only offers functions such as editing
recipes or weekly plans on the Cookidoo server and does not
allow device control. So overall, the users ug and u, from the
internal and external network as well as the phones pg and py
with the companion app in these locations, should be omitted.
Given the final UDIM graph of the TM6, we can now
identify the relevant interactions and the respective interaction
participants. If we want to conduct a forensic examination
of the TM6 device, it is much easier to identify relevant
interactions and search for their forensic artifacts. The graph
also indicates whether an investigation concerning all possible
interactions was complete. Accordingly, the possible direct
user-device interaction can, for example, be used to investigate
the presence of a person to verify an alibi with the TM6.
Furthermore, it allows us to specify which devices were
involved as interaction participants for each interaction and
where forensically relevant artifacts of these may occur.

IV. EVALUATION

To evaluate the applicability of UDIM, we apply the model
to devices that have been examined in previous papers and
those that have not yet been examined. The evaluation of the
model refers to its applicability to prior research and general
IoT devices. Table I shows the results of the model application
for the respective devices and their companion apps.

A. Table Structure

In Table I, we first divide the entries for each device into
the four pairs of interaction participants and then differentiate
further between the user-device and device-device pairs based
on their location. Since UDIM is device-centric, the location
refers to the other interaction participant, such as the user
or the other device. The user can be located in any of
the three subgraphs in the user-device pair, but not every
interaction type is possible for every subgraph. For example,
direct interaction between the user and the device is impossible
outside the device’s proximity. We also consider the location
of the other device for the device-device pair in the various
subgraphs. Though, a further distinction between the proximity
and internal network subgraphs is rarely necessary because
device-device interaction usually occurs via a network and its
respective protocol. However, if there is physical interaction
between the devices, it is necessary to distinguish between
their locations. Since there was no physical interaction for any
of the devices, we have not made a distinction in the table.

For each column provided, an entry is made for a device or
a combination of device and companion app. We first indicate
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TABLE I: Applying the model to selected publications analyzing IoT devices reveals where the various devices have been
adequately investigated and where shortcomings can be identified. When depicting interactions, we address the location of
the other interaction participant in the three subgraphs: proximity (G’)), internal network (G/’B), and external network (G”).
Furthermore, where necessary, a distinction is made with regard to the path length of the interaction. We distinguish between
direct (A), single-step transitive (B), and multi-step transitive (C) interactions.

whether interaction with the given interaction participants is
possible (0) or not possible (=) in the given subgraph Gi.
However, since it is not always clear from the given source
whether a specific interaction is possible, we label this as
unclear whether possible (1). In addition to a certain degree of
uncertainty, an interaction may be impossible under the given
conditions in the default settings and can only be enabled by
changing the settings. Besides assessing whether a specific
interaction with given interaction participants is possible in the
given location, we consider whether the authors have examined

(0) a possible interaction. Interactions that are not possible or
unclear whether they are possible cannot be investigated. If the
authors have analyzed an interaction, we assess whether the
authors have detected (®) forensic artifacts of the interaction.
The authors may find such artifacts of an interaction on the
device itself or the other interaction participants.

B. Data Sources

Since the possible interactions of a device can change due
to software updates or new hardware revisions, we indicate
for each row in Table I from which reference we have derived



the values for individual cells. We divide the table entries hor-
izontally into three categories: academic papers, blog articles,
and data sheets. The table entries in the first category refer to
peer-reviewed papers and the devices examined therein. In the
second category, we consider devices whose values we have
filled into the table based on information from technical blog
posts or other non-peer-reviewed sources. Finally, the entries in
the third category are based on data sheets or other information
published by device manufacturers. Below, we discuss the
applicability of UDIM for devices in these three categories
and examine individual entries of Table I.

a) Academic Papers: Academic papers are the most
common sources for forensic investigations of IoT or em-
bedded devices. While they undergo peer review, artifact
evaluation is not necessarily formal in the digital forensics
community', which creates some uncertainty about forensic
artifacts. Still, most academic papers are well documented
and specify app or firmware versions, providing analysts with
necessary reference values. Without standardization in forensic
analyses, however, authors may not examine all interactions.

To begin with, we take another look at the graph of the Ther-
momix TM6 (Figure 2) and can already identify the possible
interactions from it. Possible interactions include direct user-
device interactions, device-device interactions in the external
network subgraph G7, device-environment interactions, and
device-internal interactions. [3] analyzed the TM6, and we can
use their information to determine whether they examined the
possible interactions and found forensic artifacts. According
to the authors, the user-device interactions via the rotary knob
were documented in various log files, which means that foren-
sic artifacts are available. Furthermore, the authors stated that
the systemd-journald service logged the device-device
and device-internal interactions. The authors only mentioned
the loudspeaker and a temperature sensor (inside the mixing
pot) in the device description, providing no further information
about device-environment interactions via the loudspeaker. We
therefore assume they did not investigate this interaction.

Some papers describe multiple devices that can be added to
the knowledge base using UDIM. For example, [5] describe
various IoT devices (smoke detectors, temperature sensors,
motion detectors) and their forensic artifacts within a practical
forensic scenario. We could, however, not determine whether
specific interactions were possible for all devices based on
the paper alone. In these cases, we noted the possibility of
interaction as unclear. Such unclear interaction possibilities
exhibit that UDIM can identify missing information and gaps
in investigations w.r.t. interactions and interaction participants.

[25] faced the challenge with multiple devices, but only
in one device class (smart relays). Classifying the examined
devices using UDIM reveals that some investigated interac-
tions yielded no forensic artifacts. For smart relays, direct
user-device interaction appears to leave no artifacts in most
cases. For example, the authors found no firmware artifacts of
physical button presses on a Shelly relay, as this interaction is

'Exceptions include, e.g., the publication venue DFIR Review.

not logged. They also note that while multi-step transitive user-
device interaction via the vendor cloud server is possible, this
option is disabled by default. To consider this special feature,
we marked such cases with an asterisk in Table I.

b) Blog Articles: Unlike academic papers on IoT and
embedded device forensics, blog articles pose other challenges
as a basis for applying UDIM. Despite detailed artifact descrip-
tions, blog articles often lack key device information (e.g.,
hardware version, model number), which hinders transfer to
practical forensic analyses. They typically lack formal peer
review and sufficient methodological description. However,
they cover specialized devices often absent from academic
literature, which makes them valuable information sources.

There are, nonetheless, well-written blog articles which
contain all necessary information for applying our model. One
such example is the forensic analysis of the Apple HomePod
by [29]-[31], who described all steps of the investigation,
from data acquisition to data analysis, in detail. The Apple
HomePod has a microphone and a speaker, which enables it
to sense its environment. The author found forensic artifacts
in the data, such as which song was played at what time and
thus output via the loudspeaker. Furthermore, direct user inputs
such as pausing playback via the touchscreen are logged.
Traces of multi-step transitive user-device interactions, such
as adding podcasts via an iPhone and iCloud, can also be
found in the logs. The location of the iPhone relative to the
device seems irrelevant, as the data is synchronized via iCloud.
Since the Apple HomePod also synchronizes itself with iCloud
without user interaction, and the author specified artifacts for
this, device-device interaction can also be found in the external
network subgraph ny in the data. The Bluetooth logs also
contain references to paired devices; thus, such interaction is
possible, but the author did not specify any further artifacts
regarding device-device interaction outside the subgraph G;. It
also remains unclear whether device-internal interactions and
single-step transitive interactions are possible.

¢) Data Sheets: Unlike academic papers or blog articles,
data sheets provide no forensic artifacts but only device
descriptions, functions, and specifications. However, they are
authentic sources (when obtained directly from manufacturers,
excluding advertising claims) and typically provide more com-
prehensive information about possible interactions with fewer
ambiguities. Though data sheets vary vastly in scope, structure,
and layout, which makes them challenging to dissect, we can
still extract interaction information and apply the model to
corresponding devices.

The Milwaukee M18 ONEPD3-0X cordless screwdriver
exemplifies a niche smart device that has not yet been foren-
sically examined in academic literature or blogs. Still, manu-
facturer data sheets [39]-[41] provide interaction information
for UDIM. The device communicates via Bluetooth with the
One-Key companion app to transmit operating data. Direct
user-device interaction occurs when used as a tool. Single-
step user-device interaction via Bluetooth is possible, but it
is unclear whether bidirectional communication (i.e., sending
input to the device) is supported. Multi-step transitive interac-
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tion is impossible due to the Bluetooth-only connection. The
firmware only sends operating data, precluding device-internal
interaction. The device lacks sensors for device-environment
interaction. Finally, device-device interaction occurs via the
cyclical transmission of operating data to the companion app.

C. Practical Applicability

In addition to its applicability to results from various data
sources, the UDIM-created Table I offers practical usability for
law enforcement. Below, we show the practical applicability
of the table’s information for individual example scenarios.

First, we consider a classic alibi scenario where a person
is suspected of murder. Law enforcement must determine
whether the suspect was present at the crime scene at the time
of the crime. Using UDIM, they can focus on direct user-
device interactions to verify presence. In this example, the
suspect claims to have been cooking at home. Law enforce-
ment can examine kitchen devices using UDIM to investigate
direct user-device interactions. The Thermomix TM6 entry
in Table I shows that such interaction is possible and yields
forensic artifacts. Hence, the alibi could be verified or disputed
based on the forensic analysis of the TM6.

Beyond alibi scenarios, IoT devices can be directly linked to
crimes in some cases: Suppose someone manipulated a smart
relay to trigger a short circuit and cause a fire. Though the
attempt failed, law enforcement must determine who activated
the relay and their location. For the Shelly device with default
settings, Table I indicates that only direct, single-step transitive
user-device interaction is possible. Hence, the operator must
have been in proximity or within the relay’s internal network,
spatially restricting and narrowing the suspect pool.

V. DISCUSSION

When discussing UDIM, we should first consider the appli-
cability results from Section IV. Using examples and entries in
Table I, we demonstrated that all three data sources satisfy the
model and can be applied to the described devices. Depending
on source quality, type, and comparable table entries, forensic
investigators can draw different conclusions. Even data sources
without forensic investigation (e.g., data sheets) enable general
statements about interaction possibilities. Also, UDIM can
roughly classify devices without a complete forensic analysis.

Table I shows that forensic investigations are often incom-
plete and exhibit scenario-dependent coverage w.r.t. possible
interactions and artifacts. Open entries and ambiguities regard-
ing artifact verifiability can be problematic in criminal cases,
which makes the standardization of device forensics essential.
The model provides a way to verify whether all interaction
types have been investigated for possible artifacts, thereby
ensuring full coverage of an investigation. UDIM can analyze
interactions beyond scenario-relevant artifacts and document
when investigators find no artifacts. Our model thus represents
a step towards the standardization of forensic analyses.

UDIM applies to all devices meeting Definition 1 (e.g., IoT
devices, embedded devices, smartphones, or desktop PCs), to
provide guidance for analyzing technical capabilities in the

heterogeneous digital landscape. This universal applicability
enables extensive use in digital forensic analyses. Accordingly,
UDIM can compare devices or device classes based on ex-
pected forensic artifacts to help law enforcement determine
whether seizing a device is worthwhile for a specific case.
For example, verifying a person’s presence requires knowing
whether a device supports direct user-device interaction and
whether forensic investigators may find related artifacts.

Based on the ‘“hierarchy of propositions” [8], criminally
relevant propositions at the Offense level must be broken
down into Activity level statements and assigned to the Source
level. Our model offers a way to systematize this breakdown
and identifies devices where investigators can find relevant
forensic artifacts at the Source level. Law enforcement can
use digital interactions to break down Offense level statements
into Activity level propositions. A common Activity level
question involves a person’s presence at a location (e.g., to
check an alibi or presence at a crime scene). With UDIM,
such questions map to interactions (e.g., direct user-device
interaction indicates presence at the device’s location).

With this knowledge, devices at the location of interest
can be analyzed where such interaction is possible or where,
based on other sources, an investigator can likely identify
forensic artifacts. Similarly, questions about device presence
can be assigned to UDIM interactions, to provide law enforce-
ment clues about which devices warrant investigation. Beyond
presence questions, crimes can be committed in a device’s
environment. UDIM identifies devices capable of sensory
capturing the environment through device-environment inter-
action. For example, a verbal threat recorded by an Amazon
Echo microphone represents device-environment interaction.
Assuming it is already known that an investigator can find
forensic artifacts from interactions between the device and its
environment on Amazon Echo speakers or comparable models,
forensic examination can yield statements at the Source level.

VI. CONCLUSION

We presented the User-Device Interaction Model (UDIM)
by formally defining the model and its components as a
graph G = (V,E). Alongside applying the model to an
exemplary device (Thermomix TM6), we also applied UDIM
to 42 devices from 24 different academic and non-academic
sources and source types. For the latter, we created a tabular
representation of device interactions using UDIM, to discuss
whether interactions were possible, whether authors examined
them, and whether forensic artifacts have been found.

Furthermore, we discussed UDIM’s value in standardizing
and ensuring the completeness of forensic analyses of IoT and
embedded devices, and addressed its universal applicability to
electronic devices (Definition 1). Additionally, we illustrated
its applicability in law enforcement criminal cases as well as
its usefulness for data reduction during seizures.

The UDIM graph allows forensic investigators to effectively
identify device interactions and summarize them (e.g., Table I),
which is why we encourage the inclusion of UDIM graphs in
future forensic analyses of IoT or embedded devices.
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