Insights from GitHub Community on the Matter
Standard: Developer Perspectives and Challenges

Muhammad Hassan*

, Carl Gunter*, Susan Landau’, Masooda Bashir*

*University of Illinois Urbana Champaign
Email: { mhassa42, cgunter, mnb| } @illinois.edu
Tufts University [{susan.landau@tufts.edu}

Abstract—Matter seeks to resolve long-standing interoper-
ability problems in the Internet of Things (IoT), yet little is
known about how developers experience the standard in day-
to-day work. This paper examines over 13,000 issues from
the official Project CHIP GitHub repository to understand
the kinds of problems contributors report when implementing
and integrating Matter. Using topic modeling and qualitative
analysis, we identify four recurring areas of concern—Testing,
Interoperability, Development, and Platform & Network—and
describe how they manifest in the evolution of the codebase and
tooling. The findings reveal systematic technical and integration
challenges and point to concrete opportunities to refine Matter’s
test infrastructure, cross-vendor guidance, and documentation as
the standard continues to mature.

I. INTRODUCTION

The Internet of Things (IoT) has experienced significant
growth in recent years, with estimates suggesting that over
75 billion IoT devices will be in use by 2025 [49]. This
rapid expansion reflects IoT’s integration across diverse do-
mains, such as workplace environments [39]], home manage-
ment [32]], healthcare delivery [3]], sports applications [45]],
and educational settings [38]. This proliferation has created
a critical challenge that devices from different manufactur-
ers often struggle to communicate seamlessly. The resulting
interoperability gaps have generated inefficiencies, increased
deployment costs, and widespread user frustration [47]]. Un-
derstanding how practitioners navigate these challenges is
important for advancing IoT adoption and reliability.

In response to these interoperability obstacles, the Matter
standard (formerly Project CHIP) was announced in 2019, with
the first official specification released in 2022 [5]]. Matter is an
open-source, application-layer connectivity standard intended
to support communication among smart home devices from
different manufacturers, and its development is coordinated
by the Connectivity Standards Alliance (CSA) [9]]. According
to CSA reports, the alliance includes over 550 companies and
organizations as of 2025, e.g., Apple, Amazon, Google, IKEA,
and Huawei [27]], [L6], [25]. Earlier consortia, such as the Zig-
bee Alliance and other home-automation efforts, also sought

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2026
23 February 2026, San Diego, CA, USA

ISBN 978-1-970672-01-5

https://dx.doi.org/10.14722/sdiotsec.2026.23046

www.ndss-symposium.org

to improve interoperability but were limited by fragmented
ecosystems, varying levels of engagement, and constrained
device support [42], [7], [48]. As of recent CSA and industry
reports, more than 1,200 devices are Matter-certified, and
additional products can participate via bridge mechanisms that
connect non-Matter devices into Matter-based systems [17],
[12], [S7]. This paper examines how developers experience
this emerging standard in practice, rather than evaluating its
adoption claims.

Despite Matter’s growing deployment and substantial indus-
try backing, the practical realities of implementing this emerg-
ing standard remain poorly understood. Prior research has
demonstrated the value of systematically analyzing developer-
reported issues in related technical domains, surfacing recur-
ring pain points that inform the evolution of frameworks and
tools [[13[], [L1], [63]. For emerging standards like Matter, such
empirical analysis of developers’ lived experiences implement-
ing the specification directly is particularly essential. These
insights can inform CSA working groups and member com-
panies that already participate in the Project CHIP repository,
helping refine specification documentation, prioritize test and
tooling improvements, and adjust guidance so that the standard
is easier and safer to deploy.

To address this empirical gap, we conducted a systematic
analysis of issues reported on the official GitHub repository
for Matter (Project CHIP) [15]. GitHub Issues serve as a
valuable data source because the discussions capture organic
developer engagement across the full spectrum of use cases.
Unlike formal bug reports or vendor surveys, these threads
reflect real-world challenges encountered by both professional
developers and hobbyists working across diverse application
domains [54]], including integration challenges and specifica-
tion gaps. By analyzing and categorizing these discussions,
we identify the most prevalent technical and usability issues,
reveal temporal patterns in problem persistence and resolution,
and highlight areas where the Matter specification or its sup-
porting ecosystem requires refinement.

Our work aims to make the following contributions:

o We present, to the best of our knowledge, the first empiri-
cal analysis of developer and practitioner-reported issues
related to Matter standard implementation, grounded in
systematic analysis of GitHub issue discussions.

o« We identify and categorize the most common themes
emerging from reported issues, analyze distribution and

https://orcid.org/0000-0002-5713-9658
mailto:mhassa42@illinois.edu
mailto:cgunter@illinois.edu
mailto:mnb@illinois.edu
mailto:susan.landau@tufts.edu

resolution timelines across issue types, and uncover
patterns in community engagement and communication
dynamics.

e We provide actionable recommendations for the CSA,
developers, and the broader IoT community based on
empirical evidence, informing future improvements to
the Matter specification, developer resources, and best
practices in IoT interoperability.

II. BACKGROUND
A. The Matter Standard

To address interoperability issues in smart homes and IoT,
major industry stakeholders launched Project Connected Home
over IP (CHIP) in 2019, later rebranded as Matter and now de-
veloped under the Connectivity Standards Alliance (CSA) and
maintained in the official Project CHIP connectedhomeip
repository [15]]. Matter is an open-source, application-layer
protocol intended to unify smart device connectivity across
brands and platforms. A notable feature is its support for
bridge devices, which allow existing non-Matter devices (e.g.,
Zigbee or Z-Wave) to participate in Matter-based ecosys-
tems [26]]. This design extends interoperability while pre-
serving legacy deployments, but also introduces additional
configuration and reliability challenges for implementers [S0],
[51]. Matter further incorporates secure commissioning and
certificate-based authentication to protect device integrity and
user data [6], and has evolved through successive versions
(e.g., Matter 1.5) as vendors add new device classes and
features [66], [30].

B. GitHub and Issue Tracking

Modern software engineering relies heavily on collaborative
platforms that integrate version control, continuous integration
and deployment (CI/CD), and project management [31]], [36]],
[22]. GitHub has become a central platform of this kind,
combining Git-based version control with tooling for code
review, automated testing, and workflow automation [21],
[35], [56]. With over 100 million developers and 370 million
repositories, it is a key locus for open-source infrastructure
and standards development [20], [[18].

A core GitHub feature is its issue tracking system. GitHub
Issues allow contributors to report bugs, request features,
document tasks, and discuss design decisions in an organized
and searchable form [23]], [4]. Labels and issue types help
categorize and prioritize reports, while pull requests provide a
structured workflow for proposing and reviewing code changes
before merging them into the main branch. Together, these
mechanisms support asynchronous coordination and integrate
closely with CI/CD pipelines, enabling projects to evolve
through iterative, peer-reviewed changes.

Prior work shows that GitHub Issues discussions often
capture both technical and socio-technical concerns, such as
documentation gaps, environment error, and development bugs
[60], [44], [4]. For large and evolving projects, the issue
tracker becomes a record of recurring pain points and solutions
that may not appear in formal documentation or release

notes [10]]. In the case of Matter, the official Project CHIP
repository on GitHub hosts the reference implementation,
documentation, and support channel, and is used to raise
questions, report bugs, and review proposed changes with
other users including CSA members and participants [52]/.
The presence of issue and pull-request guidelines provides
a structured path for feeding developer feedback into the
codebase, which can also be discussed further in CSA working
groups[53]]. This study uses GitHub Issues from the Project
CHIP repository as an empirical window into how developers
and practitioners experience Matter in practice, focusing on
challenges, such as technical, interoperability, and network-
related problems, and how the community works to resolve
them over time.

III. RELATED WORK

Understanding the challenges that software engineers and
technology practitioners encounter is essential for guiding
both standard evolution and tooling improvements. While
traditional qualitative methods such as interviews and surveys
provide valuable depth, they face constraints in emerging
and technical domains. Recruitment is often difficult due to
the niche expertise required, and non-disclosure agreements
frequently limit candid sharing of implementation experiences
[62], [S5M, [37]. Moreover, interviews and surveys typically
capture a temporal snapshot, making it harder to trace how
problems emerge, evolve, and resolve over time [43[]. As
standards like Matter mature within fast-moving ecosystems,
methods that can observe longitudinal practitioner discourse
become critical for capturing authentic, evolving challenges.

A. Mining Developer Discussions on GitHub

Open collaboration platforms such as GitHub provide a
unique perspective into the collective problem-solving prac-
tices of software engineers. Issue tracking preserves both
technical details and the social dynamics of development,
in particular, documenting the lifecycle of bugs, feature re-
quests, and design debates [28]], [54]. This publicly accessible
data enables large-scale empirical analysis of real-world de-
velopment challenges, complementing traditional qualitative
methods with longitudinal, naturally occurring records of
developers’ experience.

Prior research demonstrates how GitHub Issues can re-
veal patterns in developer behavior and project health. Zhou
et al. found that affective communication, such as emoji
use, improves participation and accelerates issue resolution,
underscoring how community engagement shapes technical
outcomes [68]. Liao et al. used visual analytics to map engage-
ment and responsiveness within open-source projects, showing
how community coordination influences project dynamics and
maintenance burdens [34]. Biihlmann and Ghafari examined
how developers respond to security vulnerabilities, identifying
recurring tensions between openness and risk management in
collaborative environments [13]]. Other studies have analyzed
sentiment, language complexity, and responsiveness to trace
collaboration bottlenecks and communication norms [19],

[29]. In adjacent domains, Zhang et al. applied large-scale
opinion mining to MLOps discussions, uncovering systematic
practitioner pain points and building taxonomies of recurring
issues [67]. Collectively, this body of work establishes that
mining open developer communities provides a scalable lens
on technical, organizational, and usability challenges.

Analyzing developer discussions offers insight into the iter-
ative improvement of standards and their real-world adoption.
By examining technical problems and issues, researchers can
identify specification ambiguities and limitations, or ecosystem
dependencies impact progress. Such insights can feed back
into standardization bodies and technical teams, promoting
better alignment between specification design and implemen-
tation feasibility [S8]], [41]], [S9]]. For emerging standards like
Matter, where both technical maturity and ecosystem support
are still evolving, this feedback mechanism becomes especially
important.

B. Developer Perspectives on Matter Standard

Matter standard for the Internet of Things aims to reduce
fragmentation and enable seamless device communication,
yet its real-world adoption depends heavily on developer
experience. Prior work on Matter standard has largely focused
on architectural evaluations, security analyses, or user-centric
studies of smart home adoption, leaving the practitioner’s
implementation perspective underexplored. Zegeye et al. de-
veloped a hardware testbed to evaluate Matter’s technical capa-
bilities, demonstrating that integrating heterogeneous devices
remains challenging even under controlled conditions [635].
Mangar et al. designed an experimental Matter deployment to
assess user experience, revealing usability frictions that emerge
in practice [40]. These studies highlight Matter’s potential but
also underscore that specification design and implementation
reality can vary.

More recent work has identified privacy and security risks
introduced by Matter’s interoperability features, such as vul-
nerabilities in device pairing and delegation that enable hidden
hub eavesdropping attacks [33], [61]. These findings suggest
that the same mechanisms enabling flexible cross-device con-
trol can create security pitfalls. However, such analyses typi-
cally focus on protocol design rather than on the experiences
of developers encountering these issues in production code.
Understanding the practitioners and developers’ challenges
essential for informing both specification refinements and
tooling support. By systematically examining how developers
themselves report Issues from the Project CHIP repository and
resolve such challenges in the Matter codebase, this study
complements prior research providing empirical insights into
the technical, usability, and process challenges that shape
Matter’s ongoing development and adoption.

IV. METHODOLOGY

A. Data Collection and Preparation

This study analyzes publicly available issue discus-
sions from the official Matter specification repository,
project-chip/connectedhomeip, hosted on GitHub.

The dataset was collected using the GitHub REST API and
includes all public issues from the repository’s creation in
2020 through August 6, 2025. This time window spans mul-
tiple Matter specification releases, including version 1.4, and
captures the ecosystem’s evolution over several development
cycles. For each issue, we retrieved the title, body, status
(open/closed), creation and closure timestamps, labels, and
author identifiers.

We then preprocessed the issue text to prepare it for topic
modeling and qualitative analysis. Issue titles and bodies were
concatenated into a single document per issue and tokenized
using NLTK [46]. Tokens were lowercased and cleaned by
removing:

o Code blocks enclosed in triple backticks and inline code
spans (which primarily contained stack traces, build logs,
and command-line output),

o Numeric sequences longer than three digits,

« Non-alphabetic characters and single-character tokens.

Whitespace was normalized and stop words were removed
using NLTK’s English stop-word list, extended with frequent
repository-specific terms (e.g., “github”, “script”, “commit”,
“issue”) to reduce noise and focus on substantive tech-
nical content. After preprocessing, the final corpus com-
prised 13,008 issues related to the Matter specification and
its reference implementation. We also verified that remov-
ing embedded command output and logs did not materially
change the topic structure (further details are provided in
Appendix [VIII-A).

Ethical & Limitations. All data was collected from public
GitHub using authenticated API calls and respecting rate limits
and the analysis is limited to publicly visible data. Although
CSA-affiliated contributors participate in the repository and
issues follow structured reporting and review workflows, this
dataset does not reveal how often, or how systematically, these
reports are incorporated into CSA’s internal working-group
decisions or changes to the Matter specification.

B. Topic Modeling

To identify latent themes in developer-reported challenges,
we applied Latent Dirichlet Allocation (LDA), a widely used
unsupervised topic modeling technique for software repository
mining [14]. LDA was implemented in Gensim and trained
on a bag-of-words representation of the preprocessed corpus,
with each issue treated as a separate document and represented
using a learned vocabulary dictionary.

We tuned the model through a systematic grid search over
three hyperparameters: the number of topics k, the number of
passes p, and the number of training iterations 7. Concretely,
we varied:

o ke {5,15,25,35,...,95},

« p € {10,15,20},

« 7 € {100,200,...,1000}.

For each configuration, we computed the C,, coherence score,
which measures semantic relatedness among high-probability
terms within topics and has been shown to correlate with

TABLE I

TOPIC NUMBERS ALONG WITH LABELS AND CATEGORIES FOR GENERATED MATTER GITHUB ISSUES.

Topic# Keywords Label Category

0 chip, info, file, python, lib, line, src, connectedhomeip, test, stdout Matter Build & Errors Development

1 thread, wifi, ble, matter, network, commissioning, nxp, silabs, platform, support Network & Platform Setup Platform & Network
2 build, matter, include, darwin, linux, building, arm, readable, file, export Build Systems Development

3 test, tc, chip, spec, connectedhomeip, cluster, specifications, xml, attribute, python Specification Testing Testing

4 dl, type, dmg, ota, msg, key, em, command, dis, received Connectivity Platform & Network
5 app, cluster, clusters, chip, server, cpp, attributes, attribute, data, connectedhomeip Cluster Management Development

6 class, testing, support, unit, tests, function, implementation, api, data, functions Hardware-based Security Testing

7 testing, tests, fix, changes, files, test, fixes, zap, summary, unit Testing Maintenance Testing

8 chip, tool, log, dmg, command, dut, tc, error, test, user Testing Tools Testing

9 third, party, pigweed, lwip, source, pw, file, python, src, target Dependency and Environment Configuration Interoperability

10 request, guidelines, pydata, actions, sphinx, theme, formatting, force, readability, apply Documentation Maintenance Development

11 app, esp, android, tv, camera, linux, casting, using, controller, webrtc Application Interface Interoperability

12 platform, response, version, sdk, bug, reproduction, hash, prevalence, tested, type Cross Platform Interoperability

13 openthread, details, summary, close, reopen, merge, br, redirect, upgrade, creating Third-Party Dependency Platform & Network
14 test, coding, cluster, problem, location, endpoint, spec, conformance, name, rule Cluster and Testing Conformance Testing

15 device, icd, fabric, check, discussion, connectedhomeip, apple, subscription, chip, value Fabric State Management Interoperability

16 connectedhomeip, chip, doc, update, title, testing, size, docker, see, increase Docker Build Environment Development

human judgments of topic quality. We selected the model with
the highest C,, coherence for subsequent qualitative analysis.
The optimal configuration used k = 17 topics, p = 20 passes,
and ¢ = 100 iterations, yielding a coherence score of 0.59.
Table [I| summarizes the resulting topics, their top keywords,
and the higher-level categories used in our analysis.

C. Qualitative Thematic Interpretation

To move from automatically discovered topics to inter-
pretable developer challenges, we conducted a multi-stage
qualitative interpretation process. For each of the 17 topics,
we extracted the top 10 terms and sampled two sets of issues:
(i) the 15 issues with the highest proportion of that topic,
and (ii) a stratified random sample of 15 additional issues
associated with the topic. This design balances exposure to
prototypical cases with coverage of more diverse instances
and served as the primary basis for our qualitative coding
and label assignment. In practice, the term lists and 30-issue
samples per topic quickly converged on stable, interpretable
labels, and additional spot checks beyond the initial samples
did not yield new categories or meanings.

Across all topics, this procedure yields 510 closely ex-
amined issues on top of the full quantitative analysis of
all 13,008 issues, providing both depth and breadth in our
interpretation. An initial investigator (Author 1) reviewed the
terms and sampled issues for each topic and assigned a
descriptive label reflecting the dominant technical, interoper-
ability, or process concern (e.g., build failures, platform setup,
cluster conformance). Two independent reviewers (graduate
students with prior research experience in cybersecurity and
IoT) then examined the assigned labels, topic keywords, and
representative issues. They proposed refinements where labels
did not adequately capture the observed discussion patterns.

Disagreements were resolved through iterative discussion until
consensus was reached.

To further validate the thematic structure, three faculty
reviewers with backgrounds in IoT systems, security and
privacy engineering, and usable security examined the topic
labels, supporting examples, and the grouping of topics into
broader categories (Testing, Interoperability, Development,
and Platform & Network). They assessed whether the topics
were coherent, whether the labels aligned with the underlying
issue content, and whether the category structure reflected
meaningful distinctions in the Matter ecosystem. This multi-
stage process, which combines automated topic modeling
with expert review, follows established practice in qualitative
software repository mining and is intended to increase the
credibility and interpretability of the resulting themes [24],
121, (641, (8], [11.

Using the validated labels and categories, we then computed
aggregate statistics for each broad category, including issue
counts, closure rates, unique participants, comment activity,
and time-to-close (Table [[I). These quantitative summaries
provide a complementary view of how different classes of
challenges manifest and are addressed over time within the
Matter development community.

V. RESULT

Our dataset comprises 13,008 issues submitted by 1,010
unique contributors to the official Matter repository. Figure [I]
shows that as the number of issues reported per user increases,
the number of users at that reporting level decreases, indicating
that a relatively small subset of contributors files a large
share of issues[28]], [60] . On average, a contributor reports
approximately 13 issues.

Table [} summarizes activity across the four broad categories
derived from topic modeling and qualitative coding. Testing

TABLE II
SUMMARY OF ISSUE ACTIVITY ACROSS BROAD CATEGORIES

Broad Category Issue Count Percentage Unique Users Closed Issues (%) Avg. Comments Avg. Time to Close
Testing 5,545 42.63% 501 4,759 (85.83%) 3.53 26 days
Interoperability 3,926 30.18% 612 3,040 (77.43%) 3.14 46 days
Development 2,087 16.04% 396 1,781 (85.34%) 3.39 23 days
Platform & Network 1,450 11.15% 227 1,341 (92.48%) 3.37 17 days
103 discussions are active, with an average of 3.39 comments
and 3.31 labels per issue. Common labels include review —
\ approved, review — pending, examples, and app. The average
)| ¢ time to close is 23 days, suggesting steady but non-trivial effort
2 10 \. to resolve build, tooling, and refactoring tasks. The following
5 N describe the five topics covered by Development category

101 4 .\

T T
10° 10! 10? 10?
Issues Reported

Fig. 1. Number of Users vs Number of Issues Reported

issues constitute the largest group (42.63%), followed by
Interoperability (30.18%), Development (16.04%), and Plat-
form & Network (11.15%). Each category captures a distinct
dimension of practitioner work, ranging from maintaining
build and tooling infrastructure to validating cross-platform
behavior and network connectivity. Figure [2] further shows that
issue volume grows sharply from late 2022 onward across
all categories, corresponding to increased deployment and
testing following the initial Matter releases, with Testing and
Interoperability dominating the activity over time.

Among all contributors, 288 (about 28%) self-reported
a company affiliation, spanning 166 distinct organizations.
These include vendors and platform providers such as Ama-
zon, Apple, Samsung, Nordic Semiconductor, Google, Sili-
con Labs, and the CSA itself, with Google appearing most
frequently (31 users). This mix suggests that both alliance
participants and other industry actors use the repository as
a shared space for coordinating Matter development.

In the following subsections, we describe each broad cate-
gory and its topics, and relate them to how developers expe-
rience Matter’s implementation, integration, and validation in
practice. Table [[V]in the appendix provides brief explanations
of the technical terms used in describing the results.

A. Development

The Development category captures issues related to build-
ing the codebase, maintaining tooling, updating cluster im-
plementations, revising documentation, and managing con-
tainerized build environments. This category contains 2,087
issues (16.04%) reported by 396 contributors (39.21% of all
contributors). Two contributors filed more than 100 Devel-
opment issues. Most issues have been closed (85.34%), and

1) Matter Build & Errors: These issues show that build
stability is sensitive to rapid dependency changes and cross-
language tooling, especially as the project spans multiple
operating systems and architectures. Typical reports include
build failures, misconfigured scripts, CI pipelines, and com-
piler errors, often triggered when new features are integrated
or shared components are adapted to additional platforms. Ex-
amples include failing example applications (e.g., air-purifier
conformance failures) and recurring Android and Java build
breakages (Issues #37286, #34881, #31509, #36870).

2) Build Systems: These reports reflect the complexity of
sustaining a unified build system for a multi-vendor IoT
standard and highlight recurring friction when developers
synchronize tooling across environments. Build Systems issues
concern the underlying build infrastructure, such as config-
uration files for build tools (e.g., GN and CMake), branch
alignment, and setup scripts for macOS, Linux, Android, and
embedded targets. Representative issues involve bootstrap fail-
ures, missing Android build artifacts, and version mismatches
across release branches (e.g., Issues #32966, #31191, #29935,
#29936).

3) Cluster Management: These reports indicate ongo-
ing evolution of Matter’s data model and the effort re-
quired to keep cluster behavior consistent and portable
across device types. Cluster Management issues relate
to implementing, updating, and refactoring -clusters, at-
tributes, and server-side logic. Developers report dupli-
cated callbacks, migrations toward newer abstractions (e.g.,
ServerClusterInterface), and feature requests for ad-
ditional cluster types (Issues #37044, #38699, #30234-30235),
as well as adjustments to binding behavior and diagnostic
reporting.

4) Documentation Maintenance: These reports highlight
how documentation directly shapes developer understanding
and can either prevent or introduce recurring classes of errors.
Documentation Maintenance issues include updates to API
descriptions, platform guides, example instructions, and CI/CD
documentation. Many issues address formatting problems,
version drift, or missing explanations that lead to configuration
or build mistakes, such as restyling CI/CD documentation

—— Development
—— Interoperability

Platform & Network
—— Testing

(o]
o
o

Issues Reported
—_ (%]
o o
o o

0 tx)

{V O O
s]
Time

Fig. 2. Number of Issues Reported Over Time by Each Category

(Issue #30333) or updating Linux setup instructions (Issue
#32144).

5) Docker Build Environment: These issues highlight the
importance of reproducible containerized environments for
maintaining a stable build pipeline across diverse vendor
toolchains. Docker Build Environment issues focus on con-
tainer images used in CI and vendor workflows, including
updating vendor-specific images, refreshing SDK versions, and
addressing resource constraints such as disk usage (e.g., Issues
#29886, #35569, #31245, #33531).

Summary: The Development category reveals the on-
going engineering work required to sustain Matter’s
shared codebase and tooling. Contributors routinely
address build breakages, evolve cluster and server
logic, adjust documentation, and maintain Docker-
based environments, reflecting the practical cost of
supporting a rapidly changing, cross-platform stan-
dard.

B. Interoperability

The Interoperability category captures issues that arise when
Matter components interact across platforms, applications,
third-party dependencies, and device—controller interfaces. It
contains 3,926 issues (30.18%) reported by 612 contributors
(60.59% of all contributors). Five contributors filed more than
100 issues in this category, indicating sustained focus on cross-
platform and integration-related problems. Most issues have
been closed (77.43%), while 886 issues (22.57%) remain open.
Issue discussions average 3.14 comments and 2.74 labels per
issue, with frequent labels including review — approved, needs
triage (managing and prioritizing issues), examples, darwin,
and bug. The average time to close is 46 days, the longest
among all categories, reflecting the complexity of diagnosing
and resolving integration problems across heterogeneous envi-
ronments. The Interoperability category contains four topics,
each describing a specific set of integration challenges.

1) Dependency and Environment Configuration: These is-
sues underline the difficulty of keeping dependencies aligned
across the many platforms that participate in the Matter
ecosystem. Dependency and Environment Configuration issues

involve setup and maintenance of third-party libraries, build
tools, and frameworks. Developers report build failures due to
missing or incompatible components, misconfigured Python
environments (e.g., SSL errors or missing tools), and version
skew in large dependency trees (e.g., Pigweed and Abseil)
across Linux, Android, ESP32, NXP, Raspberry Pi, and other
platforms (Issues #38984, #29842, #30634, #39229).

2) Application Interface: Collectively, these issues show
that application-level interoperability depends not only on
the specification but also on convergence across platform-
specific implementations. Application Interface issues involve
how Matter applications behave on different platforms, such
as Android, Linux, ESP32, TV casting apps, and camera
controllers. Common problems include commissioning-flow
failures, missing or inconsistent media features, and mis-
matched data formats, such as passcode flow differences in
TV applications or missing fields in Android JSON encodings
(e.g., Issues #32958, #38406, #39152). Reports also highlight
gaps in WebRTC-based communication.

3) Cross Platform: These reports emphasize the challenge
of maintaining consistent Matter behavior as vendors integrate
the standard into their own SDKs and hardware. Cross Plat-
form issues focus on platform-dependent defects, API incon-
sistencies, and missing feature parity across operating systems.
Examples include unsupported commands, missing attributes,
performance anomalies on specific hardware, questions about
32-bit Linux support, and attribute type mismatches between
Android and iOS (e.g., Issues #23206, #22753, #33400).

4) Fabric State Management: This topic reflects the com-
plexity of ensuring coherent fabric behavior across controllers
and devices, particularly when handling long-lived subscrip-
tions and recovery after network disruptions. Fabric State Man-
agement issues address fabric data handling, subscription state,
idle or check-in behavior, session resumption, and controller—
device synchronization. Many reports arise from interactions
between the interaction model, subscription lifecycle, and
persistent storage, such as implementing and testing check-
in counters, resolving subscription resumption failures, and
clarifying error handling and metadata representation (e.g.,
Issues #30705, #28903, #30965, #17227).

Summary: The Interoperability category highlights the
effort required to align Matter’s specification with real
deployments across platforms, dependencies, applica-
tions, and fabrics. The long resolution times and large
contributor base indicate that cross-platform behavior
and state management are persistent sources of com-
plexity for practitioners.

Summary: The Platform & Network category features
the essential work of supporting multiple hardware
platforms and networking technologies. High closure
rates and frequent updates indicate that developers ac-
tively maintain low-level networking components and
vendor integrations that underpin higher-level Matter
functionality.

C. Platform & Network Category

The Platform & Network category covers issues related to
network configuration, commissioning, and integration with
platform-specific networking stacks. It includes 1,450 issues
(11.15%) reported by 227 contributors (22.48%). One con-
tributor filed more than 100 issues. This category has the
highest closure rate (92.48%), with 109 issues (7.52%) still
open. Issues average 3.37 comments and 3.73 labels, with
common labels such as platform, review — approved, review —
pending, examples, and submodules. The oldest open issue in
this category dates to early 2022 and concerns commissioning
Ethernet devices over BLE (Bluetooth Low Energy). Overall,
these characteristics suggest continuous platform enablement
and iterative refinement of network-related components.

1) Network & Platform Setup: These issues illustrate the
ongoing work required to maintain network support across
diverse hardware vendors. Network & Platform Setup issues
involve Wi-Fi, Thread, BLE, and commissioning workflows
on specific boards and SDKs. Many reports describe platform
bring-up and configuration tasks, such as addressing low-
power or sleep behavior, enabling support for particular devel-
opment boards, updating vendor SDKs, or fixing Thread ini-
tialization on embedded devices (e.g., Issues #38078, #29070,
#37810).

2) Connectivity: Connectivity issues show how bugs in
communication or state management can disrupt device behav-
ior across heterogeneous runtime environments. These issues
focus on how devices exchange messages and maintain state,
including OTA updates, command handling, and subscription
behavior. Developers report unintended commands emitted by
bridge applications, timeouts during remote updates, firmware
update failures on specific boards, problems with subscription
resumption, and initialization bugs, as well as runtime issues
such as JNI reference leaks (e.g., Issues #38086, #28517,
#27460).

3) Third-Party Dependency: Third-Party Dependency is-
sues reflect continuous effort to keep Matter aligned with
upstream network stacks and utility libraries while avoiding
regressions. These issues capture updates to networking and
cryptographic components such as OpenThread, OT-BR-Posix,
Pigweed, mbedTLS, nanopb, and tracing libraries. Many is-
sues are triggered by upstream version changes but are critical
for platform stability because Matter implementations rely
heavily on these dependencies (e.g., Issues #28774, #40221,
#29523).

D. Testing Category

The Testing category constitutes the largest portion of the
dataset, with 5,545 issues (42.63%) reported by 501 con-
tributors (49.60%). Eleven contributors filed more than 100
issues. Most Testing issues are closed (85.83%), while 786
(14.17%) remain open. Discussions average 3.53 comments
and 3.50 labels per issue, with common labels including review
— approved, tests, app, and review — pending. The average
time to close is 26 days. The oldest open issue (#4397) dates
to early 2021 and concerns separating build components to
support independent unit testing. These statistics highlight the
centrality of testing in Matter’s development workflow.

1) Specification Testing: Specification Testing issues illus-
trate continuous alignment work between the evolving Matter
specification and the test suite that validates conformance.
These issues relate to test-case definitions, XML specifica-
tions, cluster attributes, and Python-based test scripts. Many
reports document updates required after specification or test-
plan revisions, such as adjusting attribute checks, updating
XML definitions, or adding new tariff or cluster tests (e.g., Is-
sues #37988, #38404, #34517, #32937), as well as fixing gaps
between YAML/XML specifications and implementations.

2) Hardware-based Security: Hardware-based Security is-
sues show how security-related behavior is incrementally
tested and stabilized across platforms. These reports concern
unit tests, API refactoring, and behavior related to security
and hardware-backed cryptography. Examples include adding
or refining security support on specific platforms, restructur-
ing interfaces to improve testability, strengthening integration
tests for critical subsystems, and fixing low-level correctness
problems such as iterator invalidation or brittle test fixtures
(e.g., Issues #37977, #36809, #38008).

3) Testing Maintenance: Testing Maintenance tasks collec-
tively ensure that the testing environment remains consistent
with current tooling and code structure. These issues cover
upkeep of the test infrastructure, such as fixing compiler
warnings, updating ZAP-generated files, regenerating cluster
definitions, adjusting CI behavior, and correcting file permis-
sions (e.g., Issues #39900, #38820, #37360).

4) Testing Tools: Testing Tools issues highlight how limita-
tions and bugs in testing tools interact with device behavior to
surface failures that might not appear in simpler scenarios.
These focus on test execution tools and harnesses, failure
traces, and CHIPTool behavior. Many reports describe cer-
tification test failures, timeouts, and commissioning reliability
problems, particularly under stress tests, as well as failures
in semi-automated workflows, trusted-root mismatches, and

cluster-specific conformance breakdowns (e.g., Issues #31467,
#37655, #33994).

5) Cluster and Testing Conformance.: This topic indicates
that application examples often require refinement to match
current cluster specifications and conformance rules. These
issues arise when example applications fail conformance tests
or do not satisfy cluster requirements. Reports describe sys-
tematic failures across example apps, such as all-clusters, air-
quality-sensor, lock, lighting, and thermostat applications (e.g.,
Issues #37269, #35680, #37295, #36824, #30321, #30323).

~

Summary: Overall, the Testing category reflects the
extensive effort required to maintain compliance with
evolving specifications, ensure coverage across hard-
ware and platform environments, and support reliable
use of test tools. The size of this category, as shown
in Table highlights its central role in Matter’s
development and validation workflow.

VI. DISCUSSION
A. Security- and Privacy-Relevant Issues

Security and privacy concerns appear throughout the repos-
itory. We identified 725 issues (5.57% of all issues) containing
security or privacy-related keywords, of which 166 remain
open. The earliest unresolved issue dates to February 2021
and discusses unsafe API usage. Most of these issues fall
within the Testing category, reflecting the central role of
conformance suites and test harnesses in surfacing security-
relevant behavior. The issues cover incorrect privilege checks,
insufficient validation of message fields, inconsistent error
handling, and missing boundary conditions.

The persistence of unresolved security-related issues over
multiple years suggests that it is an ongoing and non-trivial
task in a Matter standard as it spans multiple dependencies,
programming stacks, and device classes. These results moti-
vate continued effort towards automated fuzzing, continuous
conformance testing, and, where feasible, more formal val-
idation of critical paths, particularly around commissioning,
access control, and long-lived device subscriptions [13]], [64]]

B. Limits of Developer-Centric Data

The Matter repository functions primarily as a coordina-
tion space for developers and engineers. Issues are used to
track design and development, platform integration, network
configuration, test infrastructure, interoperability failures, and
dependency maintenance, and to negotiate clarifications when
specification text and implementation diverge. This provides a
view of implementation-level challenges and the engineering
effort required to sustain a large, cross-vendor codebase,
however, the dataset does not show how often, or how system-
atically, these reports feed into CSA working-group meeting
or changes to the Matter specification updates.

Similarly, the repository only partially reflects end-user
experience. Pain points such as home deployment difficul-
ties, device onboarding failures, or multi-vendor configuration

problems often surface instead in public discussion forums and
consumer support communities. As an extension of this work,
we plan to combine our corpus with data from user-focused
venues, such as Matter Protocol and IoT discussion forums
(e.g., Reddit). This would connect developer-facing issues
with the end-user challenges and can help identify where
changes to tooling, documentation, or platform defaults would
most directly benefit both practitioners and end users.

C. Implications for Matter and IoT Standards

This study provides an empirical view of how developers
experience the Matter standard in practice. To the best of our
knowledge, it is the first systematic analysis of Matter-related
issues based on a comprehensive examination of the official
repository. The results show how contributors use issues to
report implementation problems, track issues, and coordinate
fixes for the standard.

Our four broad categories, Testing, Interoperability, De-
velopment, and Platform & Network, reveal distinct patterns
in both their numbers and resolution behavior. Testing and
Interoperability dominate issue counts, and Interoperability
issues remain open for longer on average, which suggests
that cross-vendor and cross-platform behavior is harder to
reproduce, attribute, and resolve than localized build or tooling
defects. This pattern is consistent with Matter’s goal of uni-
fying heterogeneous ecosystems and illustrates some of the
practical effort required to achieve that goal.

These challenges also point to concrete directions for im-
provement. The large number of test-related issues indicates
that strengthening test frameworks, tooling, and documentation
could reduce recurring failures and improve the efficiency of
day-to-day development. The amount and duration of interop-
erability issues suggest a need for clearer cross-vendor guide-
lines, richer diagnostics, and more comprehensive reference
examples for common deployment scenarios. The consistent
security issues in testing and commissioning processes high-
light the need for automated and formal validation methods for
critical protocol behaviors. Together, these findings show that
using developer reported GitHub issues as a valuable feedback
source for the Connectivity Standards Alliance, implementers
and IoT vendors seeking to refine Matter and related interop-
erability standards.

VII. CONCLUSION

This study offers an empirical view of how developers
engage with the Matter standard through the official Project
CHIP repository. Most reported issues concern testing and in-
teroperability, with integration and network-related bugs often
proving difficult to resolve. Development and platform sup-
port also demand ongoing maintenance, and security-relevant
problems continue to appear across versions. Taken together,
these findings indicate that improving Matter standard requires
continued effort in testing infrastructure, clearer guidance for
cross-vendor deployments, and more automated validation of
critical protocol workflows as the standard continues to evolve.

ACKNOWLEDGMENT

The authors would like to thank Ramazan Yener and
Nicholas Yeung for their help and feedback in analysis.

[1]

[2

—

[3

=

[4

=

[6

=

[7

—

[8

=

[9

—

[10]

(1]

(12]

[13]

[14

[15]
[16]
[17]

[18]
[19]

[20]
[21]

[22]

REFERENCES

Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem,
and Emad Shihab. Challenges in chatbot development: A study of stack
overflow posts. In Proceedings of the 17th international conference on
mining software repositories, pages 174-185, 2020.

Amritanshu Agrawal, Wei Fu, and Tim Menzies. What is wrong
with topic modeling? and how to fix it using search-based software
engineering. Information and Software Technology, 98:74-88, 2018.
Manal Al-Rawashdeh, Pantea Keikhosrokiani, Bahari Belaton, Moatsum
Alawida, and Abdalwhab Zwiri. Iot adoption and application for smart
healthcare: a systematic review. Sensors, 22(14):5377, 2022.
Abduljaleel Al-Rubaye and Gita Sukthankar. Improving code review
with github issue tracking. In 2022 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages
210-217. IEEE, 2022.

Rob Alexander. Matter 1.0 is here - does reality meet expectation?,
2025.

Connectivity Standards Alliance.
questions, 2025.

Mohab Aly, Foutse Khomh, Yann-Gaél Guéhéneuc, Hironori Washizaki,
and Soumaya Yacout. Is fragmentation a threat to the success of the
internet of things? IEEE Internet of Things Journal, 6(1):472-487, 2018.
Mehdi Bagherzadeh and Raffi Khatchadourian. Going big: a large-scale
study on what big data developers ask. In Proceedings of the 2019 27th
ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pages 432442,
2019.

Dimitri Belli, Paolo Barsocchi, and Filippo Palumbo. Connectivity
standards alliance matter: State of the art and opportunities. Internet
of Things, 25:101005, 2024.

Stephany Bellomo, Robert L Nord, Ipek Ozkaya, and Mary Popeck.
Got technical debt? surfacing elusive technical debt in issue trackers.
In Proceedings of the 13th international conference on mining software
repositories, pages 327-338, 2016.

Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere,
Jacques Klein, and Yves Le Traon. Got issues? who cares about it? a
large scale investigation of issue trackers from github. In 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE),
pages 188-197, 2013.

Ken Briodagh. Csa announces matter 1.2 with many improvements -
embedded computing design, 2023.

Noah Biihlmann and Mohammad Ghafari. How do developers deal
with security issue reports on github? In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, pages 1580-1589,
2022.

Uttam Chauhan and Apurva Shah. Topic modeling using latent dirichlet
allocation: A survey. ACM Computing Surveys (CSUR), 54(7):1-35,
2021.

Project CHIP. Matter (connectedhomeip) github repository. Available
at: |https://github.com/project-chip/connectedhomeip.

Connectivity Standards Alliance. Connectivity standards alliance. https:
/len.wikipedia.org/wiki/Connectivity_Standards_Alliance, May 2024.
CSA. Matter 1.2 arrives with nine new device types & improvements
across the board, Oct 2023. Press Release.

Andy Dennis. The enterprise love affair with github cloud, Sep 2023.
Giuseppe Destefanis, Marco Ortu, David Bowes, Michele Marchesi, and
Roberto Tonelli. On measuring affects of github issues’ commenters. In
Proceedings of the 3rd International Workshop on Emotion Awareness
in Software Engineering, pages 14-19, 2018.

Thomas Dohmke. 100 million developers and counting, Jan 2023.
Joseph Feliciano. Towards a collaborative learning platform: The use
of GitHub in computer science and software engineering courses. PhD
thesis, 2015.

KJ Kevin Feng, Tony W Li, and Amy X Zhang. Understanding
collaborative practices and tools of professional ux practitioners in
software organizations. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, pages 1-20, 2023.

Matter faqs — frequently asked

(23]

[24]

[25]

[26]
(27]

(28]

[29]

[30]
[31]

[32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

Aron Fiechter, Roberto Minelli, Csaba Nagy, and Michele Lanza.
Visualizing github issues. In 2021 Working Conference on Software
Visualization (VISSOFT), pages 155-159. IEEE, 2021.

Mubin Ul Haque, Leonardo Horn Iwaya, and M Ali Babar. Challenges
in docker development: A large-scale study using stack overflow. In Pro-
ceedings of the 14th ACM/IEEE international symposium on empirical
software engineering and measurement (ESEM), pages 1-11, 2020.
Simon Hill. Here’s what the “matter” smart home standard is all about,
Oct 2023.

Charlie Ice. Building bridges between zigbee and matter, Apr 2025.
Cliff Joseph. With amazon, apple and google onboard, this new alliance
aims to make your smart home work properly, Mar 2020.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. An in-depth study of the
promises and perils of mining github. Empirical Software Engineering,
21:2035-2071, 2016.

David Kavaler, Sasha Sirovica, Vincent Hellendoorn, Raul Aranovich,
and Vladimir Filkov. Perceived language complexity in github issue
discussions and their effect on issue resolution. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 72-83. IEEE, 2017.

Silicon Labs. Introduction to matter — silicon labs matter, 2025.
Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo
Meirelles. A survey of devops concepts and challenges. ACM computing
surveys (CSUR), 52(6):1-35, 2019.

Wenda Li, Tan Yigitcanlar, Isil Erol, and Aaron Liu. Motivations,
barriers and risks of smart home adoption: From systematic literature
review to conceptual framework. Energy Research & Social Science,
80:102211, 2021.

Song Liao, Jingwen Yan, and Long Cheng. Wip: Hidden hub eaves-
dropping attack in matter-enabled smart home systems. In Workshop on
Security and Privacy in Standardized IoT (SDIoTSec), 2024.

Zhifang Liao, Dayu He, Zhijie Chen, Xiaoping Fan, Yan Zhang, and
Shengzong Liu. Exploring the characteristics of issue-related behaviors
in github using visualization techniques. IEEE Access, 6:24003-24015,
2018.

Antonio Lima, Luca Rossi, and Mirco Musolesi. Coding together at
scale: Github as a collaborative social network. In Proceedings of the
international AAAI conference on web and social media, volume 8,
pages 295-304, 2014.

Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifacio. Building
a collaborative culture: a grounded theory of well succeeded devops
adoption in practice. In Proceedings of the 12th acm/ieee international
symposium on empirical software engineering and measurement, pages
1-10, 2018.

Kashumi Madampe, John Grundy, Rashina Hoda, and Humphrey Obie.
The struggle is real! the agony of recruiting participants for empirical
software engineering studies. In 2024 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 417-422.
IEEE, 2024.

Syed Hamid Hussain Madni, Javed Ali, Hafiz Ali Husnain,
Maidul Hasan Masum, Saad Mustafa, Junaid Shuja, Mohammed Maray,
and Samira Hosseini. Factors influencing the adoption of iot for e-
learning in higher educational institutes in developing countries. Fron-
tiers in Psychology, 13:915596, 2022.

Viktor Méhler and Ulrika Holmstrom Westergren. Working with iot-a
case study detailing workplace digitalization through iot system adop-
tion. In Internet of Things. Information Processing in an Increasingly
Connected World: First IFIP International Cross-Domain Conference,
IFIPIoT 2018, Held at the 24th IFIP World Computer Congress, WCC
2018, Poznan, Poland, September 18-19, 2018, Revised Selected Papers
1, pages 178-193. Springer, 2019.

Ravindra Mangar, Jingyu Qian, Wondimu Zegeye, Abdulrahman
AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A Gunter,
Mounib Khanafer, Kevin Kornegay, et al. Designing and evaluating
a testbed for the matter protocol: Insights into user experience. www.
ndss-symposium. org, 2024.

Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma.
On the relationship between design discussions and design quality: a
case study of apache projects. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 543-555, 2020.

https://github.com/project-chip/connectedhomeip
https://en.wikipedia.org/wiki/Connectivity_Standards_Alliance
https://en.wikipedia.org/wiki/Connectivity_Standards_Alliance

[42]

[43]

[44]

[45

[46
[47]

(48]

[49]

[50]

[51]

[52]
(53]
[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

Ludwig Masreliez. The fragmented smart home: A comprehensive
analysis of available interoperable solutions to connect wireless smart
home communications, 2021.

Laurie McLeod, Stephen G MacDonell, and Bill Doolin. Qualitative re-
search on software development: a longitudinal case study methodology.
Empirical software engineering, 16:430-459, 2011.

Haris Mumtaz, Carlos Paradis, Fabio Palomba, Damian A Tamburri,
Rick Kazman, and Kelly Blincoe. A preliminary study on the assign-
ment of github issues to issue commenters and the relationship with
social smells. In Proceedings of the 15th International Conference on
Cooperative and Human Aspects of Software Engineering, pages 61-65,
2022.

Rajesh Kedarnath Navandar, Syed Hamid Hasan, Netaji Jadhav, Kam-
red Udham Singh, R Monisha, and N Venkatram. Modernizing sports an
intelligent strategy for entertainment through internet of things in sports.
Entertainment Computing, 52:100804, 2025.

nltk. Github - nltk data, 2025.

Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interop-
erability in internet of things: Taxonomies and open challenges. Mobile
networks and applications, 24:796-809, 2019.

Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interop-
erability in internet of things: Taxonomies and open challenges. Mob.
Netw. Appl., 24(3):796-809, June 2019.

National Cybersecurity Center of Excellence. Internet of things (iot) —
nccoe.

Van Cu Pham, Toan Nguyen-Mau, Marios Sioutis, and Yasuo Tan. En-
abling echonet lite devices in the matter ecosystem: A bridge solution. In
2023 IEEE 12th Global Conference on Consumer Electronics (GCCE),
pages 867-868. IEEE, 2023.

Luca Pizzocolo, Mattia Cerutti, Sanders Batista Felix, and Mattia
Brambilla. Standardization of cloud interfaces using the matter pro-
tocol for interoperable smart homes. In 2025 IEEE 22nd Consumer
Communications & Networking Conference (CCNC), pages 1-6. IEEE,
2025.

Matter Project. Matter project flow — matter documentation.

project chip. Contributing to matter (formerly project chip), 2025.
Rifat Ara Proma and Paul Rosen. Visual analysis of github issues to
gain insights. arXiv preprint arXiv:2407.20900, 2024.

Irum Rauf, Tamara Lopez, Helen Sharp, and Marian Petre. Challenges
of recruiting developers in multidisciplinary studies. 2022.

Abdulkadir Seker, Banu Diri, Halil Arslan, and Mehmet Fatih Amasyali.
Open source software development challenges: a systematic literature
review on github. Research Anthology on Usage and Development of
Open Source Software, pages 33-62, 2021.

Nordic Semiconductor. Matter bridge, Dec 2024.

Pankajeshwara Sharma, Bastin Tony Roy Savarimuthu, Nigel Stanger,
Sherlock A Licorish, and Austen Rainer. Investigating developers’” email
discussions during decision-making in python language evolution. In
Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, pages 286-291, 2017.

Emre Siiliin, Metehan Sacgake1, and Eray Tiiziin. An empirical analysis
of issue templates usage in large-scale projects on github. ACM
Transactions on Software Engineering and Methodology, 33(5):1-28,
2024.

Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it:
evaluating contributions through discussion in github. In Proceedings
of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering, pages 144-154, 2014.

Haoqiang Wang, Yiwei Fang, Yichen Liu, Ze Jin, Emma Delph, Xiao-
jiang Du, Qixu Liu, and Luyi Xing. Hidden and lost control: on security
design risks in iot user-facing matter controller. 2025.

Wei Wang, Dulaji Hidellaarachchi, John Grundy, Hourieh Khalajzadeh,
Humphrey O Obie, and Anuradha Madugalla. End-users vs software
practitioners: Recruitment challenges and strategies in software engi-
neering research. In 2024 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 400-411. IEEE, 2024.
Jianyu Wu, Hao He, Kai Gao, Wenxin Xiao, Jingyue Li, and Minghui
Zhou. A comprehensive analysis of challenges and strategies for
software release notes on github. Empirical Software Engineering,
29(5):104, 2024.

Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun.
What security questions do developers ask? a large-scale study of
stack overflow posts. Journal of Computer Science and Technology,
31(5):910-924, 2016.

10

[65] Wondimu Zegeye, Ahamed Jemal, and Kevin Kornegay. Connected
smart home over matter protocol. In 2023 IEEE International Con-
ference on Consumer Electronics (ICCE), pages 1-7, 2023.

Wondimu Zegeye, Ravindra Mangar, Jingyu Qian, Vinton Morris,
Mounib Khanafer, Kevin Kornegay, Timothy J Pierson, and David
Kotz. Comparing smart-home devices that use the matter protocol. In
2025 IEEE 22nd Consumer Communications & Networking Conference
(CCNC), pages 1-6. IEEE, 2025.

Yang Zhang, Yiwen Wu, Tao Wang, Ding Bo, and Huaimin Wang. What
problems are mlops practitioners talking about? a study of discussions
in stack overflow forum and github projects. Information and Software
Technology, page 107768, 2025.

Yuhang Zhou, Xuan Lu, Ge Gao, Qiaozhu Mei, and Wei Ai. Emoji
promotes developer participation and issue resolution on github. In
Proceedings of the International AAAI Conference on Web and Social
Media, volume 18, pages 1833-1846, 2024.

[66]

[67]

[68]

VIII. APPENDIX
A. Impact of Command Output Removal

While logs and stack traces often contain concrete failure
details, we found that including them primarily inflated vocab-
ulary size and emphasized low-level error messages rather than
higher-level themes. To assess whether removing command
output and logs affected topic structure, we trained LDA
models on corpora with and without this content. The best
models differed only slightly in topic count (18 vs. 17), and
their topic—term distributions mapped to the same higher-level
categories in qualitative analysis. This suggests that excluding
verbose diagnostic log improves semantic coherence without
losing important themes. We therefore use the filtered corpus
in the main analysis to improve semantic coherence without
losing important themes.

TABLE III
POPULAR USER LABELS ISSUE AND THEIR COUNTS

Category Count
review - approved 4708
review - pending 3126
examples 2930
app 2427
needs triage 2168
fast track 2104
tests 1965
platform 1859
darwin 1771
bug 1500
scripts 1363
controller 1271
github 1033

TABLE IV

SELECTED TECHNICAL TERMS AND BRIEF DESCRIPTIONS

Term Brief Description

Cluster A functional module in Matter that organizes related commands and attributes
(e.g., On/Off, Thermostat).

Attribute A field within a cluster representing the device state or configuration (e.g.,

ServerClusterInterface

CI/CD

GN
CMake

Docker
Pigweed
Abseil
OpenThread
OT-BR-Posix
mbedTLS
nanopb
WebRTC
CHIPTool
ICD

JNI

SDK

BLE

Fabric in Matter

XML

YAML

current temperature).

An abstraction used in Matter to define server-side behavior for a cluster.
Continuous Integration and Deployment; a practice of automating code changes
to ensure quality through building and testing.

A meta-build tool used to generate project files for native build systems.

A cross-platform tool for configuring and generating build files for C/C++
projects.

A platform that allows the creation of consistent and replicable environments
for building and testing applications.

A collection of software libraries and tools used in Matter and related projects
for embedded systems.

A set of C++ libraries (e.g., utilities, containers) that serve as dependencies in
projects.

An open-source implementation of the Thread networking protocol for IoT
devices.

An implementation of the OpenThread Border Router designed for POSIX-like
systems.

A lightweight cryptographic library used for secure communication protocols
like TLS.

A small-footprint implementation of Protocol Buffers for use in embedded
systems.

A technology enabling real-time communication for audio, video, and data over
the internet.

A reference application for controlling Matter devices, used for testing and
commissioning.

Idle or sleep-capable device concept in Matter, with specific behavior for
communication and data subscription.

Java Native Interface; a framework that allows Java code to call native
applications and libraries written in other languages.

Software Development Kit; a collection of tools, libraries, and documentation
for building applications for a specific platform.

Bluetooth Low Energy; a wireless technology designed for short-range com-
munication with minimal power consumption.

A concept representing a group of devices or users that share access to a
common set of resources in Matter.

Extensible Markup Language; a flexible format for structuring data, commonly
used in configurations and data exchange.

Yet Another Markup Language; a human-readable data serialization format often
used for configuration files.

11

	Introduction
	Background
	The Matter Standard
	GitHub and Issue Tracking

	Related Work
	Mining Developer Discussions on GitHub
	Developer Perspectives on Matter Standard

	Methodology
	Data Collection and Preparation
	Topic Modeling
	Qualitative Thematic Interpretation

	Result
	Development
	Matter Build & Errors
	Build Systems
	Cluster Management
	Documentation Maintenance
	Docker Build Environment

	Interoperability
	Dependency and Environment Configuration
	Application Interface
	Cross Platform
	Fabric State Management

	Platform & Network Category
	Network & Platform Setup
	Connectivity
	Third-Party Dependency

	Testing Category
	Specification Testing
	Hardware-based Security
	Testing Maintenance
	Testing Tools
	Cluster and Testing Conformance.

	Discussion
	Security- and Privacy-Relevant Issues
	Limits of Developer-Centric Data
	Implications for Matter and IoT Standards

	Conclusion
	References
	Appendix
	Impact of Command Output Removal

