WIP: Runtime Consistency Enforcement
Between SBOM and Software Execution

Yuta Shimamoto*, Hiroyuki Uekawa', Mitsuaki Akiyama' and Toshihiro Yamauchi*
* Okayama University, Okayama, Japan
Email: shimamoto@s.okayama-u.ac.jp yamauchi@okayama-u.ac.jp
TNTT Social Informatics Laboratories, Tokyo, Japan
Email: h.uekawa@ntt.com akiyama@ieee.org

Abstract—A Software Bill of Materials (SBOM) enables rapid
understanding of software composition and improves the ef-
ficiency of vulnerability management. However, inconsistencies
between the components described in the SBOM and those that
actually exist on a device can result in missed detections or
false positives during SBOM-based vulnerability analysis, thereby
increasing the risk of executing unknown threats. This study
proposes SBOM-based Access Control (SBOM-AC), a mechanism
that determines whether a program may be executed by enforcing
access control policies derived from the SBOM. By denying the
execution of programs that do not match the SBOM, SBOM-
AC reduces security risks arising from the runtime execution of
unmanaged programs. Denial logs can also be used to improve
the completeness and accuracy of the SBOM, thereby reducing
missed detections and false positives in SBOM-based vulnera-
bility management and enabling the identification of unexpected
execution attempts. SBOM-AC can be implemented as a Linux
Security Module (LSM), making it suitable for deployment on
Linux-based IoT devices and compatible with existing Mandatory
Access Control systems. Experimental results show that SBOM-
AC introduces a maximum latency of only (.14 ms. Based on this
measurement, the estimated performance impact of SBOM-AC
on device services is negligible.

I. INTRODUCTION

The increasing complexity of the software supply chain
has exposed significant security risks, as demonstrated by
attacks on software vendors such as the SolarWinds supply
chain attack [1] and the widespread vulnerabilities in common
dependencies such as Log4j [2]. One reason for the delayed
identification and response in such incidents is the insufficient
visibility into the internal components of software systems. For
example, the firmware of a typical home router—a representa-
tive IoT device—contains an average of 662 components [3],
making it difficult to rapidly and accurately understand its full
software composition. A Software Bill of Materials (SBOM)
addresses this visibility issue and contributes to faster vulner-
ability management and incident response.

An SBOM is formal, machine-readable metadata that
uniquely identifies software packages and their components,

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2026
23 February 2026, San Diego, CA, USA

ISBN 978-1-970672-01-5

https://dx.doi.org/10.14722/sdiotsec.2026.23019
www.ndss-symposium.org

enabling consistent sharing of component information among
stakeholders in the software supply chain. SBOM adoption
is advancing globally and is expected to become a standard
exchange format for software composition data. For example,
in the European Union, the Cyber Resilience Act requires the
creation of an SBOM for all products with digital elements,
including IoT devices [4]. In the United States, Executive
Order 14028 mandates the creation of SBOMs for software
delivered to the federal government as a part of the broader
efforts to enhance the software supply chain [5].

However, SBOMs do not always comprehensively or ac-
curately reflect the actual composition of a device. This
is because SBOMs may not contain complete or accurate
information at the time of creation, and they can become
outdated because they provide only information about software
components at a specific point in time.

When an SBOM does not match the real system state,
vulnerability detection may produce false positives or miss
actual vulnerabilities, potentially leading to inadequate impact
assessment and delaying incident response. In particular, the
execution of programs not listed in the SBOM indicates
that unmanaged programs are running, which exposes attack
surfaces that have not been identified. Therefore, the programs
that are executed on the device must remain consistent with
those listed in the SBOM. Ensuring such consistency requires
a mechanism that guarantees that only SBOM-listed programs
may be executed.

Mandatory Access Control (MAC) provides a promising
foundation for enforcing this requirement.However, existing
MAC systems are not designed to compare program infor-
mation during runtime, i.e., during device use, with SBOM
entries, making them unsuitable for direct enforcement based
on SBOM-based execution policies. Specialized policies and
mechanisms capable of verifying SBOM consistency at run-
time are needed, and such controls must coexist with existing
security policies without conflicts.

This study proposes SBOM-based Access Control (SBOM-
AC), which allows or denies program execution based on
consistency with the SBOM. SBOM-AC uses SBOM-derived
policies to prevent or merely log the execution of programs not
listed in the SBOM, and denial logs help improve SBOM accu-
racy and completeness. This approach enhances the reliabil-
ity of SBOM-based vulnerability management. Additionally,

SBOM-AC helps prevent the execution of malicious programs
introduced after product release. Evaluation results show that
SBOM-AC introduces a maximum latency of only 0.14 ms,
estimating a negligible performance impact on device services.

The main contributions of this paper are as follows:

1) We propose SBOM-AC, which derives access control
policies from the SBOM and uses them to control
program execution.

2) We implement an SBOM-AC prototype as a Linux Se-
curity Module (LSM), enabling integration into common
Linux-based IoT platforms.

3) We evaluate the latency introduced by SBOM-AC and
demonstrate that its overhead is estimated to have a
negligible impact on device services.

II. BACKGROUND
A. Threats in Vulnerability Management Using SBOM

This section identifies potential causes of inconsistencies
in SBOMs during both pre-release and post-release phases,
along with the resulting threats. These causes are summarized
in Figure 1.

CISA defines the SBOM creation process as follows [6]:
First, as many SBOMs as possible are collected for the com-
ponents on which the target component depends. New SBOMs
are generated for components without available SBOMs. Next,
the collected and newly generated SBOMs are integrated to
construct the SBOM of the target component. At this stage,
the SBOM creation is performed on a best-effort basis and
does not require completeness.

However, this process makes it difficult to comprehensively
and accurately represent a device’s composition. For example,
collected SBOMs may contain errors, or the retrieved SBOM
may correspond to a different version than the one deployed
on the device. Such cases lead to inconsistencies between the
SBOM and the actual system composition. Additional chal-
lenges arise during SBOM generation: even with automated
tools, accuracy and completeness remain insufficient in many
cases [7], [8].

Furthermore, inherent limitations of SBOMs must be con-
sidered. SBOMs capture static component information at a
specific point in time. Therefore, composition changes or
program updates after SBOM creation are not automatically
reflected. For example, if a vendor using third-party equipment
updates its firmware but does not or cannot reacquire the
corresponding SBOM, continued use of the outdated SBOM
results in referencing information that no longer matches the
actual composition.

Vulnerability management based on outdated, inaccurate
or incomplete SBOMs risks missing vulnerabilities or threats
and generating false positives. Executing programs excluded
from vulnerability management introduces significant risk.
Therefore, a mechanism is required to ensure that the SBOM
covers all components necessary for vulnerability management
before product release and to prevent unlisted programs from
affecting the device after release.

’ Before Release

| SBOM Collection H SBOM Creation H Software Update ‘

3 \

«Collected SBOM may «SBOM generation
contain errors tools often lack

* Retrieved SBOM may accuracy and
be for a different completeness
version

H After Release ‘

\

*SBOM becomes
outdated and no
longer matches the
actual composition

Fig. 1. Causes of Inconsistencies in SBOMs

B. Limitations of Existing MAC for SBOM-AC

MAC is an access control mechanism in which system ad-
ministrators enforce access permissions. Unlike Discretionary
Access Control, MAC systems enforce access based on pre-
defined security policies, meaning that users and file owners
cannot arbitrarily modify permissions.

Representative MAC systems includes SELinux and AppAr-
mor. SELinux is a label-based MAC system in which files are
associated with security labels, and access control is enforced
based on label relationships. AppArmor is path-based and
defines access permissions for each program using file paths.

However, SBOM-AC relies on verifying that runtime pro-
gram information matches the SBOM. SELinux and Ap-
pArmor cannot enforce policies based on runtime program
metadata. Since they rely solely on associating labels with
files or managing access by file paths, they cannot incorporate
program information during runtime into control decisions.
Consequently, they cannot correctly enforce program execu-
tion constraints in cases where the program content changes
after policy creation.

Furthermore, SELinux and AppArmor already provide well-
established operational policies. SBOM-AC policies would
introduce numerous new rules for many programs. Attempting
to merge SBOM-based policies with existing MAC rules
is likely to cause numerous conflicts, and multiple policies
cannot coexist for the same program. In practice, enforcing
SBOM-based execution control using these systems would
require disabling existing policies, thereby weakening overall
system security.

Therefore, neither SELinux nor AppArmor is suitable for
SBOM-driven access control. A new method is required that
can verify consistency by comparing the composition infor-
mation recorded in the SBOM with the actual system state.

III. THREAT MODEL

This study aims to prevent threats that cannot be identified
due to inconsistencies between the SBOM and the actual com-
position in SBOM-based vulnerability management. There-
fore, attacks that exploit known vulnerabilities in programs
already listed in the SBOM are outside the scope of this study.
Furthermore, this study is premised on the assumption that

ter

BEFORE RUNTIME —N r RUNTIME
Pollcy
[SBOM-to-Policy Conver | define

check(" Policy Decision Point get metadata
L (PDP)
“ask response
) execution decision

1input ~

SBOM execution
N User/F’rogram execution decision ¥ (accept/deny Program
é request Policy Enforcement Point) execute
Q (PEP)

f Toutput

| refine l | analyze

. read 4 read .

SBOM Manager

Audit/Deny Log Security Analyst

Fig. 2. Overview of SBOM-AC

vendors make their best effort to create SBOMs that com-
prehensively include all necessary components by correcting
identified inconsistencies.

IV. PROPOSED METHOD
A. Overview

If all programs that affect device operations are comprehen-
sively listed in the SBOM, threats arising from inconsistencies
between the SBOM and the actual system composition can
be mitigated. SBOM-AC therefore focuses on identifying and
controlling the program execution, specifically the execution
of program files, based on whether they belong to compo-
nents accurately represented in the SBOM. By allowing such
programs to run while appropriately handling the execution of
programs not listed in the SBOM, SBOM-AC prevents security
risks caused by mismatches between the SBOM and the real
system state.

The design principles of SBOM-AC are as follows:
Reference program information at execution time: To
accommodate program modifications or replacements after
policy definition, SBOM-AC must reference the latest program
metadata at execution time.

Avoiding disruption of essential device services: Essential
programs must not be blocked; therefore, the design must
guarantee reliable execution for required components.
Coexistence with existing MAC systems: SBOM-AC must
operate without interfering with existing MAC systems or their
established policies, ensuring that current security measures
remain intact.

The overall workflow is shown in Figure 2. Before runtime,
the SBOM-to-Policy Converter defines policies using metadata
extracted from the SBOM. At runtime, when a program
execution request occurs, the Policy Enforcement Point (PEP)
permits or blocks execution and logs all SBOM-inconsistent
execution attempts based on decisions made by the Policy
Decision Point (PDP). Runtime operations are designed to
remain compatible with existing MAC systems. The following
sections describe each component in detail.

B. SBOM-to-Policy Converter

This component takes an SBOM as input, extracts the meta-
data of the programs it contains, and defines a corresponding

policy. To ensure that files listed in the SBOM exist and have
not been modified, the policy must be expressed in a verifiable
format. Therefore, in addition to each file’s path, the policy
includes the file’s hash value and its hash algorithm.

C. Policy Enforcement Point (PEP)

When a program execution is requested by a user or another
program, the PEP consults the PDP. If the PDP determines that
execution should be allowed, the PEP permits the program to
run. If the PDP determines that execution should be denied,
the PEP performs one of the following actions:

Audit mode: The program is executed, but a log entry is
generated indicating that a program not listed in the SBOM
was executed.

Deny mode: The program is not executed, and a log entry is
generated indicating an attempt to run a non-listed program.

During development, audit mode allows SBOM managers
to iteratively refine SBOM entries, thereby strengthening the
effectiveness of vulnerability management. Policies generated
from the corrected SBOMs can then be safely used in deny
mode without interrupting essential device operations. After
release, the deny mode reliably blocks potentially harmful pro-
gram executions. An additional benefit is that deny mode also
prevents the execution of malicious programs introduced after
deployment such as IoT malware (for example, Mirai [9]).

The generated logs are also valuable for security analysis.
By examining these logs, security analysts can determine
whether an event resulted from insufficient SBOM mainte-
nance, intentionally omitted programs, or malicious programs
introduced externally, enabling appropriate countermeasures.

D. Policy Decision Point (PDP)

For each program execution request, the PDP determines
whether execution should be allowed or denied. Specifically,
it compares the program information allowed by the policy
with the latest metadata of the program requesting execution.
If they match, the PDP instructs the PEP to allow execution.
If any mismatch is detected, it instructs the PEP to deny it.

The PDP retrieves the program’s current path and hash value
for each execution request. The hash value is computed for the
target program using the policy-specified algorithm.

E. Limitations

SBOM-AC has the following limitations:

1) The file path of the program to be executed and its hash
value must be included in the SBOM.

2) SBOM-AC cannot detect or prevent attempts to bypass
its enforcement mechanism; therefore, it should be used
together with other security mechanisms.

3) SBOM-AC logs cannot be used to identify programs that
have been uninstalled from the device.

V. EVALUATION AND RESULTS
A. Prototype Implementation

A prototype of SBOM-AC was implemented to verify its
core functions: permitting the execution of programs listed in
the SBOM, denying non-compliant programs, and recording
audit or deny logs. All functions were successfully confirmed.
The prototype consists of (i) a Policy Loader that defines and
loads policies from the SBOM, and (ii) an Execution Enforcer
that verifies program information and enforces execution de-
cisions. Although the prototype does not yet support the per-
program hashing algorithm selection described in Section IV,
and currently limits execution control to programs within a
specific directory, it is sufficient to confirm that SBOM-AC
operates on Linux-based distributions. The design principles
of each prototype component and the method used to create
the SBOM are described below.

Policy Loader: A simplified prototype of the SBOM-to-
Policy Converter was implemented. It extracts file paths and
file hash values from the SBOM and converts each pair into an
internal policy format. In this prototype, all hash algorithms
were fixed to SHA-256. The resulting policy is loaded into
kernel space. File paths are stored in a hash table within the
Execution Enforcer to enable fast lookup.

Execution Enforcer: This component implements both
the PEP and PDP as an LSM and integrates them into
Ubuntu 24.04.3. It supports both the audit and deny modes.
Whenever there is an attempt to execute a program in the
/home /user/sbomac_test/ directory, its path and hash
value are retrieved and compared with the preloaded policy
to determine whether execution should be allowed or denied.
Denials are logged to dmesg. Experiments were conducted
using VMware (25H2) running on a Windows 11 host. The
virtual machine was configured with four logical cores of an
Intel® Core™ i7-8700T CPU @ 2.40 GHz and 8 GB of RAM.
SBOM Generation: The SBOM generation tool Syft [10]
v1.38.0 was used to generate SBOMs for use by the Policy
Loader. When configured to collect as many files as possible,
Syft comprehensively scans all files within a specified direc-
tory and its subdirectories, enabling the extraction of file path
and hash-value pairs. The resulting SBOMs were formatted
in SPDX 2.3, which supports representing both file paths and
hash values, making it suitable for use in this prototype.

B. Performance Evaluation

To estimate the runtime impact of SBOM-AC on IoT device
services, we measured the execution time of a lightweight

TABLE I
EXECUTION TIME UNDER EACH CONDITION
Condition Entries | Minimum | Average | Maximum
Disabled 2.39 ms 2.42 ms 2.50 ms
Allowed execution 1 2.46 ms 2.49 ms 2.53 ms
475,953 246 ms | 2.49 ms 2.51 ms
Denied execution 1 2.44 ms 2.46 ms 2.51 ms
475,953 246 ms | 2.48 ms 2.52 ms

program that outputs a simple string, under conditions where
SBOM-AC was enabled or disabled. One program was in-
cluded in the SBOM, representing allowed execution, and the
other was excluded, representing denied execution.

Measurements were taken under the following three condi-
tions:

1) Program executed with SBOM-AC disabled

2) Allowed program executed with SBOM-AC enabled

3) Denied program executed with SBOM-AC enabled

SBOM-AC was fixed to audit mode for all measurements,
as deny mode blocks program execution and therefore cannot
be compared with the SBOM-AC-disabled baseline.

Furthermore, for each condition, comparisons were made
using two different numbers of SBOM entries:

1) Evaluation-focused SBOM containing only one entry

2) Broader SBOM with 475,953 entries, including non-

evaluated files

For each condition and entry count, the average execution
time was computed from 100,000 executions. This procedure
was repeated 100 times to obtain the maximum, average,
and minimum of the resulting averages. The results are
summarized in Table I. Across all entry sizes, only denied
executions exhibited a slight increase in execution time which
remained smaller than the inherent execution-time variability.
Allowed executions showed no clear difference, likely because
the allowed program lookup position increased by only about
200 entries. Moreover, the enabled state incurred an additional
latency of at most 0.14 ms compared with the disabled state.

These measurements include the additional processing over-
head introduced by SBOM-AC. Comparing the maximum dif-
ference with the baseline minimum execution time (2.39 ms)
shows that SBOM-AC adds approximately 6% to the execution
time. Given that IoT device services typically involve more
complex operations such as network communication [11], the
resulting runtime overhead, and thus the performance impact,
are expected to be negligible.

VI. CONCLUSION

This study proposes SBOM-AC to mitigate risks caused by
inconsistencies between SBOMs and actual device composi-
tions, where unknown programs may be executed. By identi-
fying and recording execution requests for programs missing
from or inaccurately described in the SBOM, SBOM-AC
supports SBOM correction and detection of programs outside
SBOM-based vulnerability management. Blocking such exe-
cutions also prevents overlooked threats. Experimental results

demonstrate that SBOM-AC introduces a maximum latency of
only 0.14 ms, expecting a negligible impact on device services.

However, several challenges remain for future work. First,
we will identify additional elements that influence device
operation beyond executed programs and expand the control
scope of SBOM-AC. We will also refine SBOM-to-policy
conversion by identifying which elements of widely used
SBOM formats can reliably provide the policy information
required by SBOM-AC. To evaluate overhead more rigorously,
we will measure standalone latency, memory usage, and CPU
utilization. We further plan to assess SBOM-AC’s effective-
ness in achieving its intended security objectives. Finally, we
will investigate the feasibility and expected benefits of broader
adoption of an SBOM-AC through vendor surveys.

ACKNOWLEDGMENT

This work was partially supported by JST BOOST (Japan
Grant Number JPMJBS2403) and by Okayama Foundation for
Science and Technology.

REFERENCES

[1] S. Peisert, B. Schneier, H. Okhravi, F. Massacci, T. Benzel, C. Landwehr,
M. Mannan, J. Mirkovic, A. Prakash, and J. B. Michael, “Perspectives
on the solarwinds incident,” IEEE Security & Privacy, vol. 19, no. 2,
pp. 7-13, 2021.

[2] CISA, “Apache Log4j Vulnerability Guidance.” [On-
line]. Available: https://www.cisa.gov/news-events/news/apache-log4j-
vulnerability-guidance

[3] Forescout, “Popular OT/IoT Router Firmware Images Contain
Outdated Software and Exploitable N-Day Vulnerabilities Affecting
the Kernel” [Online]. Available: https://www.forescout.com/press-
releases/ot-iot-router-firmware-outdated-software-vulnerabilities/

[4] EU, “The Cyber Resilience Act.” [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX %3 A32024R2847

[5] White House, “Improving the Nation’s Cybersecurity.” [Online].
Available: https://www.federalregister.gov/documents/2021/05/17/2021-
10460/improving-the-nations-cybersecurity

[6] CISA, “Framing Software Component Transparency: Establishing a
Common Software Bill of Materials (SBOM) Third Edition.” [On-
line]. Available: https://www.cisa.gov/sites/default/files/2024-10/SBOM
Framing Software Component Transparency 2024.pdf

[71 N. Kawaguchi, C. Hart, and H. Uchimura, “Understanding the ef-
fectiveness of sbom generation tools for manually installed packages
in docker containers,” Journal of Internet Services and Information
Security, vol. 14, no. 3, pp. 191-212, 2024.

[8] S. Yu, W. Song, X. Hu, and H. Yin, “On the correctness of metadata-
based sbom generation: A differential analysis approach,” in 2024 54th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2024, pp. 29-36.

[91 M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
1093-1110.

[10] Anchor, “Syft.” [Online]. Available: https://github.com/anchore/syft

[11] O. Ali, M. K. Ishak, M. K. L. Bhatti, I. Khan, and K.-I. Kim, “A com-
prehensive review of internet of things: Technology stack, middlewares,
and fog/edge computing interface,” Sensors, vol. 22, no. 3, p. 995, 2022.

